PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure
- PMID: 18443018
- DOI: 10.1093/bioinformatics/btn199
PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure
Abstract
Motivation: Accurate prediction of B-cell epitopes is an important goal of computational immunology. Up to 90% of B-cell epitopes are discontinuous in nature, yet most predictors focus on linear epitopes. Even when the tertiary structure of the antigen is available, the accurate prediction of B-cell epitopes remains challenging.
Results: Our predictor, PEPITO, uses a combination of amino-acid propensity scores and half sphere exposure values at multiple distances to achieve state-of-the-art performance. PEPITO achieves an area under the curve (AUC) of 75.4 on the Discotope dataset. Additionally, we benchmark PEPITO as well as the Discotope predictor on the more recent Epitome dataset, achieving AUCs of 68.3 and 66.0, respectively.
Availability: PEPITO is available as part of the SCRATCH suite of protein structure predictors via www.igb.uci.edu.
Contact: pfbaldi@ics.uci.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
Similar articles
-
HSEpred: predict half-sphere exposure from protein sequences.Bioinformatics. 2008 Jul 1;24(13):1489-97. doi: 10.1093/bioinformatics/btn222. Epub 2008 May 8. Bioinformatics. 2008. PMID: 18467349
-
Prediction of linear B-cell epitopes.Methods Mol Biol. 2009;524:335-44. doi: 10.1007/978-1-59745-450-6_24. Methods Mol Biol. 2009. PMID: 19377956
-
EPSVR and EPMeta: prediction of antigenic epitopes using support vector regression and multiple server results.BMC Bioinformatics. 2010 Jul 16;11:381. doi: 10.1186/1471-2105-11-381. BMC Bioinformatics. 2010. PMID: 20637083 Free PMC article.
-
Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools.J Mol Recognit. 2007 Mar-Apr;20(2):75-82. doi: 10.1002/jmr.815. J Mol Recognit. 2007. PMID: 17205610 Review.
-
An introduction to epitope prediction methods and software.Rev Med Virol. 2009 Mar;19(2):77-96. doi: 10.1002/rmv.602. Rev Med Virol. 2009. PMID: 19101924 Review.
Cited by
-
Infectious disease mRNA vaccines and a review on epitope prediction for vaccine design.Brief Funct Genomics. 2021 Sep 11;20(5):289-303. doi: 10.1093/bfgp/elab027. Brief Funct Genomics. 2021. PMID: 34089044 Free PMC article. Review.
-
AbImmPred: An immunogenicity prediction method for therapeutic antibodies using AntiBERTy-based sequence features.PLoS One. 2024 Feb 23;19(2):e0296737. doi: 10.1371/journal.pone.0296737. eCollection 2024. PLoS One. 2024. PMID: 38394128 Free PMC article.
-
Machine Learning Techniques for the Prediction of B-Cell and T-Cell Epitopes as Potential Vaccine Targets with a Specific Focus on SARS-CoV-2 Pathogen: A Review.Pathogens. 2022 Jan 24;11(2):146. doi: 10.3390/pathogens11020146. Pathogens. 2022. PMID: 35215090 Free PMC article. Review.
-
Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens.J Chem Theory Comput. 2023 Aug 22;19(16):5315-5333. doi: 10.1021/acs.jctc.3c00513. Epub 2023 Aug 1. J Chem Theory Comput. 2023. PMID: 37527403 Free PMC article. Review.
-
Molecular Evolution of the Fusion Protein (F) Gene in Human Respirovirus 3.Front Microbiol. 2020 Jan 15;10:3054. doi: 10.3389/fmicb.2019.03054. eCollection 2019. Front Microbiol. 2020. PMID: 32010105 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources