Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr;20(6):611-21.
doi: 10.1080/08958370801915291.

Three-dimensional model for aerosol transport and deposition in expanding and contracting alveoli

Affiliations

Three-dimensional model for aerosol transport and deposition in expanding and contracting alveoli

Imre Balásházy et al. Inhal Toxicol. 2008 Apr.

Abstract

Particle transport and deposition within a model alveolus, represented by a rhythmically expanding and contracting hemisphere, was modeled by a three-dimensional analytical model for the time-dependent air velocity field as a superposition of uniform and radial flow components, satisfying both the mass and momentum conservation equations. Trajectories of particles entrained in the airflow were calculated by a numerical particle trajectory code to compute simultaneously deposition by inertial impaction, gravitational sedimentation, Brownian diffusion, and interception. Five different orientations of the orifice of the alveolus relative to the direction of gravity were selected. Deposition was calculated for particles from 1 nm to 10 microm, for 3 breathing conditions, and for 5 different entrance times relative to the onset of inspiration. For the analyzed cases, the spatial orientation of the orifice of an alveolus has practically no effect on deposition for particles below about 0.1 microm, where deposition is dominated by Brownian motion. Above about 1 microm, where deposition is governed primarily by gravitational settling, deposition can vary from 0 to 100%, depending on the spatial orientation, while deposition of particles 0.1-1 microm falls between these two extreme cases. Due to the isotropic nature of Brownian motion, deposition of the 10-nm particles is practically uniform for all spatial orientations. However, for larger particles, deposition can be quite inhomogeneous, consistent with the direction of gravity. While nearly all particles are exhaled during the successive expiration phase, there are a few cases where particles still leave the alveolus even after many breathing cycles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources