Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun;43(7):682-93.
doi: 10.1080/10934520801959823.

Mobility and degradation of trinitrotoluene/metabolites in soil columns: effect of soil organic carbon content

Affiliations

Mobility and degradation of trinitrotoluene/metabolites in soil columns: effect of soil organic carbon content

Neera Singh et al. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008 Jun.

Abstract

There has been increasing interest in enhancing natural attenuation of munitions-contaminated soils. Present study reports the effect of increasing soil organic matter content on fate and mobility of trinitrotoluene (TNT) and metabolites in soil columns. This study was performed using 30-cm-long columns containing a top 5 cm of contaminated soil as a source layer and an uncontaminated soil (25 cm) adjusted to 0.5, 1.0, 1.5 and 3.0% organic carbon (OC) content using compost. Contaminated soil layer was fortified with uniformly ring-labeled (14)C-trinitrotoluene (TNT) or 2,4-dinitrotoluene (DNT); in total there were 8 treatments. Columns were leached with synthetic rain water under unsaturated flow conditions in downside up direction. There was significant increase in the retention of both (14)C-TNT and (14)C-DNT in soils with increasing soil OC content and in 3.0% soil OC content column < 1% TNT/DNT was recovered in the leachate. Further, degradation of TNT and metabolites from contaminated soil was significantly increased and resulted in greater soil-bound residues. Formation of monoamino-dinitrotoluene (ADNTs), diamino-mononitrotoluene (DANTs) and monoamino-mononitrotoluene (ANTs) metabolites was greatly enhanced with increase in OC content of soils. Study suggests that increasing OC content of contaminated soil to 3.0% significantly enhanced the reduction of nitroaromatics to more polar amine metabolites and the formation of soil-bound residues.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources