Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level using allyl acetate as an allyl metal surrogate
- PMID: 18444616
- PMCID: PMC2858451
- DOI: 10.1021/ja802001b
Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level using allyl acetate as an allyl metal surrogate
Abstract
Protocols for highly enantioselective carbonyl allylation from the alcohol or aldehyde oxidation level are described based upon transfer hydrogenative C-C coupling. Exposure of allyl acetate to benzylic alcohols 1a-i in the presence of an iridium catalyst derived from [IrCl(cod)]2 and (R)-BINAP delivers products of C-allylation 2a-i. Employing isopropanol as terminal reductant, exposure of allyl acetate to aryl aldehydes 3a-i in the presence of an iridium catalyst derived from [IrCl(cod)]2 and (-)-TMBTP delivers identical products of C-allylation 2a-i. In all cases examined, exception levels of enantioselectivity are observed. Thus, enantioselective carbonyl allylation is achieved from the alcohol or aldehyde oxidation level in the absence of any preformed allylmetal reagents. These studies define a departure from preformed organometallic reagents in carbonyl additions that transcend the boundaries of oxidation level.
Similar articles
-
Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level via transfer hydrogenative coupling of allyl acetate: departure from chirally modified allyl metal reagents in carbonyl addition.J Am Chem Soc. 2008 Nov 5;130(44):14891-9. doi: 10.1021/ja805722e. Epub 2008 Oct 8. J Am Chem Soc. 2008. PMID: 18841896 Free PMC article.
-
anti-Diastereo- and enantioselective carbonyl crotylation from the alcohol or aldehyde oxidation level employing a cyclometallated iridium catalyst: alpha-methyl allyl acetate as a surrogate to preformed crotylmetal reagents.J Am Chem Soc. 2009 Feb 25;131(7):2514-20. doi: 10.1021/ja808857w. J Am Chem Soc. 2009. PMID: 19191498 Free PMC article.
-
anti-Diastereo- and enantioselective carbonyl (hydroxymethyl)allylation from the alcohol or aldehyde oxidation level: allyl carbonates as allylmetal surrogates.J Am Chem Soc. 2010 Apr 7;132(13):4562-3. doi: 10.1021/ja100949e. J Am Chem Soc. 2010. PMID: 20225853 Free PMC article.
-
Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency.Chem Commun (Camb). 2009 Dec 21;(47):7278-87. doi: 10.1039/b917243m. Epub 2009 Oct 16. Chem Commun (Camb). 2009. PMID: 20024203 Free PMC article. Review.
-
Asymmetric Iridium-Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition.Top Curr Chem. 2016;372:85-101. doi: 10.1007/128_2015_651. Top Curr Chem. 2016. PMID: 26187028 Free PMC article. Review.
Cited by
-
Catalytic Enantioselective Synthesis of Chiral Organofluorine Compounds: Alcohol-Mediated Hydrogen Transfer for Catalytic Carbonyl Reductive Coupling.Org Process Res Dev. 2019;23(5):730-736. doi: 10.1021/acs.oprd.9b00035. Epub 2019 Mar 22. Org Process Res Dev. 2019. PMID: 32982140 Free PMC article.
-
Enantioselective conversion of primary alcohols to α-exo-methylene γ-butyrolactones via iridium-catalyzed C-C bond-forming transfer hydrogenation: 2-(alkoxycarbonyl)allylation.J Am Chem Soc. 2012 Jul 11;134(27):11100-3. doi: 10.1021/ja303839h. Epub 2012 Jun 26. J Am Chem Soc. 2012. PMID: 22734694 Free PMC article.
-
Ethanol: Unlocking an Abundant Renewable C2 -Feedstock for Catalytic Enantioselective C-C Coupling.Angew Chem Int Ed Engl. 2021 May 3;60(19):10542-10546. doi: 10.1002/anie.202102694. Epub 2021 Mar 30. Angew Chem Int Ed Engl. 2021. PMID: 33689214 Free PMC article.
-
Selection between Diastereomeric Kinetic vs Thermodynamic Carbonyl Binding Modes Enables Enantioselective Iridium-Catalyzed anti-(α-Aryl)allylation of Aqueous Fluoral Hydrate and Difluoroacetaldehyde Ethyl Hemiacetal.J Am Chem Soc. 2018 Aug 1;140(30):9392-9395. doi: 10.1021/jacs.8b05725. Epub 2018 Jul 18. J Am Chem Soc. 2018. PMID: 30020777 Free PMC article.
-
Development of a Strategy for Linear-Selective Cu-Catalyzed Reductive Coupling of Ketones and Allenes for the Synthesis of Chiral γ-Hydroxyaldehyde Equivalents.Org Lett. 2019 Oct 4;21(19):7992-7998. doi: 10.1021/acs.orglett.9b02973. Epub 2019 Sep 18. Org Lett. 2019. PMID: 31532684 Free PMC article.
References
-
-
For reviews on enantioselective carbonyl allylation, see: Ramachandran PV. Aldrichim. Acta. 2002;35:23. Kennedy JWJ, Hall DG. Angew. Chem. Int. Ed. 2003;42:4732. Denmark SE, Fu J. Chem. Rev. 2003;103:2763. Yu C-M, Youn J, Jung H-K. Bull. Korean Chem. Soc. 2006;27:463. Marek I, Sklute G. Chem. Commun. 2007:1683. Hall DG. Synlett. 2007:1644.
-
-
- Mikhailov BM, Bubnov YN. Izv. Akad. Nauk SSSR, Ser. Khim. 1964:1874.
- Hosomi A, Sakurai H. Tetrahedron Lett. 1976;17:1295.
- Sakurai H. Pure Appl. Chem. 1982;54:1.
-
-
For chiral allyl metal reagents, see: Herold T, Hoffmann RW. Angew. Chem. Int. Ed. Engl. 1978;17:768. Hoffmann RW, Herold T. Chem. Ber. 1981;114:375. Hayashi T, Konishi M, Kumada M. J. Am. Chem. Soc. 1982;104:4963. Brown HC, Jadhav PK. J. Am. Chem. Soc. 1983;105:2092. Roush WR, Walts AE, Hoong LK. J. Am. Chem. Soc. 1985;107:8186. Reetz M. Pure Appl. Chem. 1988;60:1607. Short RP, Masamune S. J. Am. Chem. Soc. 1989;111:1892. Corey EJ, Yu C-M, Kim SS. J. Am. Chem. Soc. 1989;111:5495. Seebach D, Beck AK, Imwinkeiried R, Roggo S, Wonnacott A. Helv. Chim. Acta. 1987;70:954. Riediker M, Duthaler RO. Angew. Chem., Int. Ed. Engl. 1989;28:494. Panek JS, Yang M. J. Am. Chem. Soc. 1991;113:6594. Kinnaird JWA, Ng PY, Kubota K, Wang X, Leighton JL. J. Am. Chem. Soc. 2002;124:7920. Hackman BM, Lombardi PJ, Leighton JL. Org. Lett. 2004;6:4375.
-
-
-
For selected reviews, see: Tamaru Y. Palladium-Catalyzed Reactions of Allyl and Related Derivatives with Organoelectrophiles. In: Negishi E.-i., editor. Handbook Organopalladium Chemistry for Organic Synthesis. Vol. 2. Wiley-Interscience; New York: 2002. p. 1917. Tamaru Y. In: Perspectives in Organopalladium Chemistry for the XXI Century. Tsuji J, editor. Elsevier; Amsterdam: 1999. p. 215. Kondo T, Mitsudo T-A. Curr. Org. Chem. 2002;6:1163.
-
-
-
For selected examples, see: Tabuchi T, Inanaga J, Yamaguchi M. Tetrahedron Lett. 1986;27:1195. Takahara JP, Masuyama Y, Kurusu Y. J. Am. Chem. Soc. 1992;114:2577. Kimura M, Ogawa Y, Shimizu M, Sueishi M, Tanaka S, Tamaru Y. Tetrahedron Lett. 1998;39:6903. Kimura M, Shimizu M, Shibata K, Tazoe M, Tamaru Y. Angew. Chem. Int. Ed. 2003;42:3392. Zanoni G, Gladiali S, Marchetti A, Piccinini P, Tredici I, Vidari G. Angew. Chem. Int. Ed. 2004;43:846. Masuyama Y, Kaneko Y, Kurusu Y. Tetrahedron Lett. 2004;45:8969. Tsuji Y, Mukai T, Kondo T, Watanabe Y. J. Organomet. Chem. 1989;369:C51. Kondo T, Ono H, Satake N, Mitsudo T.-a., Watanabe Y. Organometallics. 1995;14:1945.
-
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources