Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;20(7):819-27.
doi: 10.1093/intimm/dxn040. Epub 2008 Apr 30.

CD4+ T cell hyper-responsiveness in CD45 transgenic mice is independent of isoform

Affiliations

CD4+ T cell hyper-responsiveness in CD45 transgenic mice is independent of isoform

Robert J Salmond et al. Int Immunol. 2008 Jul.

Abstract

The CD45 tyrosine phosphatase is required for T cell development and function by virtue of its role as a positive regulator of src family kinase activity. In addition, recent data have highlighted that CD45 also acts as a negative regulator of Lck function by dephosphorylation of critical tyrosine residues. Lck functionality and TCR responsiveness are elevated in transgenic mice expressing the CD45RO isoform at 'intermediate' (10-40% of wild type) levels, indicating that the expression level of CD45 is critical in determining the sensitivity of T cells to TCR stimulation. However, it is unclear whether such a phenotype is specific for the CD45RO isoform, typically expressed by activated T cells. In the present work, the roles of three isoforms of CD45, RO, RB and RABC, in thymocyte development, T cell responses and TCR signalling pathways were directly compared. The data demonstrate that expression of CD45RB or CD45RABC at intermediate levels also results in CD4(+) T cell hyper-reactivity, as previously published for CD45RO. These data emphasize the dual functions of CD45 as both a positive and a negative regulators of TCR signalling irrespective of specific isoform expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances