Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007:409:365-77.
doi: 10.1007/978-1-60327-118-9_27.

Nonlinear predictive modeling of MHC class II-peptide binding using Bayesian neural networks

Affiliations

Nonlinear predictive modeling of MHC class II-peptide binding using Bayesian neural networks

David A Winkler et al. Methods Mol Biol. 2007.

Abstract

Methods for predicting the binding affinity of peptides to the MHC have become more sophisticated in the past 5-10 years. It is possible to use computational quantitative structure-activity methods to build models of peptide affinity that are truly predictive. Two of the most useful methods for building models are Bayesian regularized neural networks for continuous or discrete (categorical) data and support vector machines (SVMs) for discrete data. We illustrate the application of Bayesian regularized neural networks to modeling MHC class II-binding affinity of peptides. Training data comprised sequences and binding data for nonamer (nine amino acid) peptides. Peptides were characterized by mathematical representations of several types. Independent test data comprised sequences and binding data for peptides of length < or = 25. We also internally validated the models by using 30% of the data in an internal test set. We obtained robust models, with near-identical statistics for multiple training runs. We determined how predictive our models were using statistical tests and area under the receiver operating characteristic (ROC) graphs (A(ROC)). Some mathematical representations of the peptides were more efficient than others and were able to generalize to unknown peptides outside of the training space. Bayesian neural networks are robust, efficient "universal approximators" that are well able to tackle the difficult problem of correctly predicting the MHC class II-binding activities of a majority of the test set peptides.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources