Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul 15;398(1-3):53-9.
doi: 10.1016/j.scitotenv.2008.03.022. Epub 2008 May 2.

Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp

Affiliations

Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp

Tanya Cáceres et al. Sci Total Environ. .

Abstract

The acute toxicity of an organophosphorous pesticide, fenamiphos and its metabolites, fenamiphos sulfoxide (FSO), fenamiphos sulfone (FSO(2)), fenamiphos phenol (FP), fenamiphos sulfoxide phenol (FSOP) and fenamiphos sulfone phenol (FSO(2)P), to the aquatic alga Pseudokirchneriella subcapitata and the terrestrial alga Chlorococcum sp. was studied. The toxicity followed the order: fenamiphos phenol>fenamiphos sulfone phenol>fenamiphos sulfoxide phenol>fenamiphos. The oxidation products of fenamiphos, FSO and FSO(2) were not toxic to the algal species up to 100 mg L(-1). Both algae were able to transform fenamiphos, FSO and FSO(2), while the phenols were found to be stable in the incubation media. Bioaccumulation of both fenamiphos and its metabolites was observed in the case of Chlorococcum sp. while only metabolites were accumulated in P. subcapitata. This study demonstrates that (i) the hydrolysis products of fenamiphos, FSOP and FSO(2)P are more toxic to both fresh water and soil algae than their parent chemicals, (ii) further fenamiphos can be transformed and bioconcentrated by these algae. Therefore, contamination of natural environments such as waterbodies with fenamiphos or its metabolites can have adverse impacts on the food chain and associated biota (especially to the primary consumers such as Daphnia) since algae are the primary producers located at the base of the food chain. Further, the finding that the fenamiphos phenols are more toxic to algae highlights the need to consider the transformation products in ecological risk assessment of fenamiphos.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources