Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:41:21-35.
doi: 10.1159/000131068.

Functional anatomy and immunological interactions of ocular surface and adnexa

Affiliations
Review

Functional anatomy and immunological interactions of ocular surface and adnexa

Friedrich Paulsen. Dev Ophthalmol. 2008.

Abstract

Background: This chapter gives an overview about the structures and physiology of the ocular surface and its adnexa and focuses in a second part on the possible meaning of eye-associated lymphoid tissue (EALT) in a context with the development of dry eye.

Methods: Sections deal with (1) anatomy of the ocular surface, lacrimal gland, eyelid and nasolacrimal ducts. (2) The meaning and importance of the lacrimal functional unit and the function of the mucosal innate immune system are briefly summarized. (3) Finally, the occurrence and the possible function of EALT is discussed with regard to tolerance induction and dry eye.

Results: The epithelial surface of the eye and its specialized glandular infoldings produce the components of the tear film, which include water, protective antimicrobials, cytokines, lipids as well as mucins and trefoil factor family (TFF) peptides. Antimicrobials, mucins and TFF peptides perform a number of essential functions which, collectively, provide protection of the ocular surface. Their production changes in cases of dry eye. The development of EALT is a common feature frequently occurring in symptomatically normal conjunctiva and nasolacrimal ducts.

Conclusions: The production of antimicrobials, mucins and TFF peptides can be linked with cell signaling, tear film rheology, and antimicrobial defense at the ocular surface. Changes in the production of such peptides and proteins in cases of dry eye support the assumption that these peptides and proteins are involved in the pathophysiological events that occur at the ocular surface and lacrimal apparatus. Whether special types of bacteria, viruses, or other factors, e.g., immune deviation, are responsible for the development of EALT in humans requires further investigation in prospective and experimental studies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources