Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Mar;14(1):19-32.
doi: 10.1089/teb.2007.0115.

Endothelial cell-matrix interactions in neovascularization

Affiliations
Review

Endothelial cell-matrix interactions in neovascularization

Megan E Francis et al. Tissue Eng Part B Rev. 2008 Mar.

Abstract

The success of many therapies in regenerative medicine requires the ability to control the formation of stable vascular networks within tissues. The formation of new blood vessels, or neovascularization, is mediated, in part, by interactions between endothelial cells (ECs) and insoluble factors in the extracellular microenvironment. These interactions are determined by the chemical, physical, and mechanical properties of the matrix. Understanding how extracellular matrices (ECMs) and synthetic scaffolds influence neovascularization can contribute to the fundamental knowledge of normal and diseased tissue physiology and can be used to guide the design of new therapies. The goal of this review is to provide an overview of the complex role EC-matrix interactions play in neovascularization. A particular emphasis is placed on presenting differences in two subsets of ECM, basement membranes and stromal matrices, and identification of the properties of these matrices that define their biological functions. Attempts to apply information about EC-ECM interactions to enhance vascularization of synthetic materials are presented, and areas in need of further research are identified throughout this review. Our understanding of the role EC-matrix interactions play in neovascularization remains limited, but continued progress in this area could be of significant benefit to the design of clinically applicable engineered tissues.

PubMed Disclaimer

Publication types

LinkOut - more resources