Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May 2:8:8.
doi: 10.1186/1472-6785-8-8.

The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations

Affiliations

The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations

Toke T Høye et al. BMC Ecol. .

Abstract

Background: Climate change is particularly pronounced in the High Arctic and a better understanding of the repercussions on ecological processes like herbivory, predation and pollination is needed. Arthropods play an important role in the high-arctic ecosystem and this role is determined by their density and activity. However, density and activity may be sensitive to separate components of climate. Earlier emergence due to advanced timing of snowmelt following climate change may expose adult arthropods to unchanged temperatures but higher levels of radiation. The capture rate of arthropods in passive open traps like pitfall trap integrates density and activity and, therefore, serves as a proxy of the magnitude of such arthropod-related ecological processes. We used arthropod pitfall trapping data and weather data from 10 seasons in high-arctic Greenland to identify climatic effects on the activity pattern of nine arthropod taxa.

Results: We were able to statistically separate the variation in capture rates into a non-linear component of capture date (density) and a linear component of weather (activity). The non-linear proxy of density always accounted for more of the variation than the linear component of weather. After accounting for the seasonal phenological development, the most important weather variable influencing the capture rate of flying arthropods was temperature, while surface-dwelling species were principally influenced by solar radiation.

Conclusion: Consistent with previous findings, air temperature best explained variation in the activity level of flying insects. An advancement of the phenology in this group due to earlier snowmelt will make individuals appear earlier in the season, but parallel temperature increases could mean that individuals are exposed to similar temperatures. Hence, the effect of climatic changes on the activity pattern in this group may be unchanged. In contrast, we found that solar radiation is a better proxy of activity levels than air temperature in surface-dwelling arthropods. An advancement of the phenology may expose surface-dwelling arthropods to higher levels of solar radiation, which suggest that their locomotory performance is enhanced and their contribution to ecological processes is increased.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Inter-annual dynamics of weather variables. Variation in weather variables calculated for each of the trapping periods in each year during 1996–2005. a) Thawing day-degrees (°C/day), b) Incoming short-wave radiation (W/m2), c) Average daily precipitation (mm/day) and d) Frequency of high wind speeds indexed by the number of 10 min intervals with wind speed above 3 m/s per day.
Figure 2
Figure 2
Seasonal dynamics of solar radiation and temperature. The level of average daily incoming solar radiation (open dots) and temperature (filled dots) in relation to day of the year averaged for the years 1996–2005. A third-order polynomial fit to the temperature and solar radiation data is indicated by a line and the distance between maxima of the two models is given in days.

Similar articles

Cited by

References

    1. Kattsov VM, Källén E, Cattle H, Christensen J, Drange H, Hanssen-Bauer I, Jóhannesen T, Karol I, Räisänen J, Svensson G, Vavulin S. Arctic Climate Impact Assessment. Cambridge: Cambridge University Press; 2005. Future climate change: modeling and scenarios for the Arctic; pp. 99–150.
    1. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F. Ecological responses to recent climate change. Nature. 2002;416:389–395. doi: 10.1038/416389a. - DOI - PubMed
    1. Strathdee AT, Bale JS. Life on the edge: insect ecology in arctic environments. Annu Rev Entomol. 1998;43:85–106. doi: 10.1146/annurev.ento.43.1.85. - DOI - PubMed
    1. Danks HV. Some effects of photoperiod, temperature, and food on emergence in three species of Chironomidae (Diptera) Can Entomol. 1978;110:289–300.
    1. MacLean SFJr, Pitelka FA. Seasonal patterns of abundance of tundra arthropods near Barrow. Arctic. 1971;24:19–40.

LinkOut - more resources