Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Aug 1;79(3):377-86.
doi: 10.1093/cvr/cvn114. Epub 2008 May 2.

Remote ischaemic preconditioning: underlying mechanisms and clinical application

Affiliations
Review

Remote ischaemic preconditioning: underlying mechanisms and clinical application

Derek J Hausenloy et al. Cardiovasc Res. .

Abstract

Remote ischaemic preconditioning (RIPC) represents a strategy for harnessing the body's endogenous protective capabilities against the injury incurred by ischaemia and reperfusion. It describes the intriguing phenomenon in which transient non-lethal ischaemia and reperfusion of one organ or tissue confers resistance to a subsequent episode of lethal ischaemia reperfusion injury in a remote organ or tissue. In its original conception, it described intramyocardial protection, which could be relayed from the myocardium served by one coronary artery to another. It soon became apparent that myocardial infarct size could be dramatically reduced by applying brief ischaemia and reperfusion to an organ or tissue remote from the heart before the onset of myocardial infarction. The concept of remote organ protection has now been extended beyond that of solely protecting the heart to providing a general form of inter-organ protection against ischaemia-reperfusion injury. This article reviews the history and evolution of the phenomenon that is RIPC, the potential mechanistic pathways underlying its cardioprotective effect, and its emerging application in the clinical setting.

PubMed Disclaimer

Publication types

MeSH terms