Sequence-specific conformational flexibility of SNARE transmembrane helices probed by hydrogen/deuterium exchange
- PMID: 18456822
- PMCID: PMC2479619
- DOI: 10.1529/biophysj.108.132928
Sequence-specific conformational flexibility of SNARE transmembrane helices probed by hydrogen/deuterium exchange
Abstract
SNARE proteins mediate fusion of intracellular eukaryotic membranes and their alpha-helical transmembrane domains are known to contribute to lipid bilayer mixing. Synthetic transmembrane domain peptides were previously shown to mimic the function of SNARE proteins in that they trigger liposome fusion in a sequence-specific fashion. Here, we performed a detailed investigation of the conformational dynamics of the transmembrane helices of the presynaptic SNAREs synaptobrevin II and syntaxin 1a. To this end, we recorded deuterium/hydrogen-exchange kinetics in isotropic solution as well as in the membrane-embedded state. In solution, the exchange kinetics of each peptide can be described by three different classes of amide deuteriums that exchange with different rate constants. These are likely to originate from exchange at different domains of the helices. Interestingly, the rate constants of each class vary with the TMD sequence. Thus, the exchange rate is position-specific and sequence-specific. Further, the rate constants correlate with the previously determined membrane fusogenicities. In membranes, exchange is retarded and a significant proportion of amide hydrogens are protected from exchange. We conclude that the conformational dynamics of SNARE TMD helices is mechanistically linked to their ability to drive lipid mixing.
Figures





Similar articles
-
Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity.J Mol Biol. 2001 Aug 24;311(4):709-21. doi: 10.1006/jmbi.2001.4889. J Mol Biol. 2001. PMID: 11518525
-
Synaptobrevin transmembrane domain determines the structure and dynamics of the SNARE motif and the linker region.Biochim Biophys Acta. 2016 Apr;1858(4):855-65. doi: 10.1016/j.bbamem.2016.01.030. Epub 2016 Feb 4. Biochim Biophys Acta. 2016. PMID: 26851777
-
Alternate interfaces may mediate homomeric and heteromeric assembly in the transmembrane domains of SNARE proteins.J Mol Biol. 2006 Mar 17;357(1):184-94. doi: 10.1016/j.jmb.2005.12.060. Epub 2006 Jan 6. J Mol Biol. 2006. PMID: 16427079
-
Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling.Acc Chem Res. 2014 Oct 21;47(10):3018-27. doi: 10.1021/ar500194w. Epub 2014 Aug 29. Acc Chem Res. 2014. PMID: 25171396 Review.
-
The role of transmembrane domains in membrane fusion.Cell Mol Life Sci. 2007 Apr;64(7-8):850-64. doi: 10.1007/s00018-007-6439-x. Cell Mol Life Sci. 2007. PMID: 17429580 Free PMC article. Review.
Cited by
-
Helix-destabilizing, beta-branched, and polar residues in the baboon reovirus p15 transmembrane domain influence the modularity of FAST proteins.J Virol. 2011 May;85(10):4707-19. doi: 10.1128/JVI.02223-10. Epub 2011 Mar 2. J Virol. 2011. PMID: 21367887 Free PMC article.
-
Stabilization of conformationally dynamic helices by covalently attached acyl chains.Protein Sci. 2009 Aug;18(8):1801-5. doi: 10.1002/pro.155. Protein Sci. 2009. PMID: 19569191 Free PMC article.
-
H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: is there a need for a top-down approach?Anal Chem. 2009 Oct 1;81(19):7892-9. doi: 10.1021/ac901366n. Anal Chem. 2009. PMID: 19694441 Free PMC article.
-
The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase.J Am Chem Soc. 2013 Jan 30;135(4):1317-29. doi: 10.1021/ja3112093. Epub 2013 Jan 16. J Am Chem Soc. 2013. PMID: 23265086 Free PMC article.
-
The Multifaceted Role of SNARE Proteins in Membrane Fusion.Front Physiol. 2017 Jan 20;8:5. doi: 10.3389/fphys.2017.00005. eCollection 2017. Front Physiol. 2017. PMID: 28163686 Free PMC article. Review.
References
-
- Farrens, D. L., C. Altenbach, K. Yang, W. L. Hubbell, and H. G. Khorana. 1996. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 274:768–770. - PubMed
-
- Klingenberg, M. 2005. Ligand-protein interaction in biomembrane carriers. The induced transition fit of transport catalysis. Biochemistry. 44:8563–8570. - PubMed
-
- Matthews, E. E., M. Zoonens, and D. M. Engelman. 2006. Dynamic helix interactions in transmembrane signaling. Cell. 127:447–450. - PubMed
-
- Perozo, E., D. M. Cortes, P. Sompornpisut, A. Kloda, and B. Martinac. 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature. 418:942–948. - PubMed
-
- Cordes, F. S., J. N. Bright, and M. S. Sansom. 2002. Proline-induced distortions of transmembrane helices. J. Mol. Biol. 323:951–960. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources