Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;1(1):38-41.
doi: 10.1088/1748-6041/1/1/006. Epub 2006 Mar 15.

Effect of hydroxyapatite nanoparticles on the ultrastructure and function of hepatocellular carcinoma cells in vitro

Affiliations

Effect of hydroxyapatite nanoparticles on the ultrastructure and function of hepatocellular carcinoma cells in vitro

Mei-Zhen Yin et al. Biomed Mater. 2006 Mar.

Abstract

The interaction of Bel-7402 hepatocellular carcinoma cells (HCC) as a single cell suspension with hydroxyapatite (HAP) nanoparticles was investigated. It was observed by an inverted microscope that the cells were still homogeneously distributed in the culture medium after 24 h. A TEM analysis showed that the HAP nanoparticles attached to the Bel-7402 cells were finally swallowed by the cells after 4 h, and induced ultrastructural changes of the cells after 4 days. A MTT assay and cell count test for the HAP nanoparticles of various concentrations from 0.14 to 0.56 mmol L(-1) showed that the HAP nanoparticles at a concentration of 0.56 mmol L(-1) induced the strongest effect on the inhibition of Bel-7402 cell proliferation and induced a dramatic decline in cell numbers. Proliferation of Bel-7402 was inhibited by more than 70%, compared to the control. A cell cycle analysis revealed that HAP can arrest Bel-7402 cells at the G1 phase with increasing effect over time. These findings demonstrated that HAP can enter into HCC very easily, change their ultrastructure, and evidently suppress their proliferation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources