Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;2(2):93-101.
doi: 10.1088/1748-6041/2/2/006. Epub 2007 Mar 14.

Bioactivity of polyurethane-based scaffolds coated with Bioglass

Affiliations

Bioactivity of polyurethane-based scaffolds coated with Bioglass

M Bil et al. Biomed Mater. 2007 Jun.

Abstract

Polyurethane (PUR) and polyurethane/poly(d, l-lactide) acid (PUR/PDLLA) based scaffolds coated with Bioglass particles for application in bone tissue engineering were fabricated. The slurry-dipping method was used for coating preparation. The homogeneous structure of the Bioglass coatings on the surface of the PUR and PUR/PDLLA foams indicated a good adhesion of the bioactive glass particles to polyurethane without any additional surface treatment. In vitro studies in simulated body fluid (SBF) were performed to study the influence of Bioglass coating on biodegrability and bioactivity of PUR-based scaffolds. The surface of Bioglass-coated samples was covered by a layer of carbonate-containing apatite after 7 days of immersion in SBF, while in uncoated polymer samples apatite crystals were not detected even after 21 days of immersion in SBF. The apatite layer was characterized by scanning electron microscopy (SEM), EDS analysis and attenuated total reflectance-Fourier transform infrared spectrometry (FTIR-ATR). Weight loss measurements showed that the in vitro degradation rate of the composite scaffolds in SBF was higher in comparison to uncoated polyurethane samples. PUR and PUR/PDLLA foams with Bioglass coating have potential to be used as bioactive, biodegradable scaffolds in bone tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources