Prediction of cyclosporine A blood levels: an application of the adaptive-network-based fuzzy inference system (ANFIS) in assisting drug therapy
- PMID: 18458894
- DOI: 10.1007/s00228-008-0490-x
Prediction of cyclosporine A blood levels: an application of the adaptive-network-based fuzzy inference system (ANFIS) in assisting drug therapy
Abstract
Objective: Therapeutic drug monitoring (TDM) is a procedure in which the levels of drugs are assayed in various body fluids with the aim of individualizing the dose of critical drugs, such as cyclosporine A. Cyclosporine A assays are performed in blood.
Methods: We proposed the use of the Takagi and Sugeno-type "adaptive-network-based fuzzy inference system" (ANFIS) to predict the concentration of cyclosporine A in blood samples taken from renal transplantation patients. We implemented the ANFIS model using TDM data collected from 138 patients and 20 input parameters. Input parameters for the model consisted of concurrent use of drugs, blood levels, sampling time, age, gender, and dosing intervals.
Results: Fuzzy modeling produced eight rules. The developed ANFIS model exhibited a root mean square error (RMSE) of 0.045 with respect to the training data and an error of 0.057 with respect to the checking data in the MATLAB: environment.
Conclusion: ANFIS can effectively assist physicians in choosing best therapeutic drug dose in the clinical setting.
Similar articles
-
Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.Environ Sci Pollut Res Int. 2021 May;28(20):25265-25282. doi: 10.1007/s11356-021-12410-1. Epub 2021 Jan 16. Environ Sci Pollut Res Int. 2021. PMID: 33453033
-
Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.Environ Monit Assess. 2020 Jun 17;192(7):439. doi: 10.1007/s10661-020-08268-4. Environ Monit Assess. 2020. PMID: 32556670
-
Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS).J Radiat Res. 2018 Jul 1;59(4):436-441. doi: 10.1093/jrr/rrx087. J Radiat Res. 2018. PMID: 29351656 Free PMC article.
-
Therapeutic drug monitoring of cyclosporine and area under the curve prediction using a single time point strategy: appraisal using peak concentration data.Biopharm Drug Dispos. 2015 Dec;36(9):575-86. doi: 10.1002/bdd.1967. Epub 2015 Aug 20. Biopharm Drug Dispos. 2015. PMID: 26224332
-
[Therapeutic drug monitoring of mycophenolate mofetil, sirolimus and cyclosporine at C2].Ann Biol Clin (Paris). 2003 May-Jun;61(3):251-8. Ann Biol Clin (Paris). 2003. PMID: 12805001 Review. French.
Cited by
-
Artificial intelligence and kidney transplantation.World J Transplant. 2021 Jul 18;11(7):277-289. doi: 10.5500/wjt.v11.i7.277. World J Transplant. 2021. PMID: 34316452 Free PMC article. Review.
-
An In-depth overview of artificial intelligence (AI) tool utilization across diverse phases of organ transplantation.J Transl Med. 2025 Jun 18;23(1):678. doi: 10.1186/s12967-025-06488-1. J Transl Med. 2025. PMID: 40533820 Free PMC article. Review.
-
Advancements in Artificial Intelligence for Kidney Transplantology: A Comprehensive Review of Current Applications and Predictive Models.J Clin Med. 2025 Feb 3;14(3):975. doi: 10.3390/jcm14030975. J Clin Med. 2025. PMID: 39941645 Free PMC article. Review.
-
Dose adjustment strategy of cyclosporine A in renal transplant patients: evaluation of anthropometric parameters for dose adjustment and C0 vs. C2 monitoring in Japan, 2001-2010.Int J Med Sci. 2013 Sep 23;10(12):1665-73. doi: 10.7150/ijms.6727. eCollection 2013. Int J Med Sci. 2013. PMID: 24151438 Free PMC article. Clinical Trial.
-
Beyond Human Limits: Harnessing Artificial Intelligence to Optimize Immunosuppression in Kidney Transplantation.J Clin Med Res. 2023 Sep;15(8-9):391-398. doi: 10.14740/jocmr5012. Epub 2023 Sep 30. J Clin Med Res. 2023. PMID: 37822851 Free PMC article. Review.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources