Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug 1;413(3):559-69.
doi: 10.1042/BJ20071637.

Orphan nuclear receptor SHP interacts with and represses hepatocyte nuclear factor-6 (HNF-6) transactivation

Affiliations

Orphan nuclear receptor SHP interacts with and represses hepatocyte nuclear factor-6 (HNF-6) transactivation

Yong-Soo Lee et al. Biochem J. .

Abstract

SHP (small heterodimer partner; NR0B2) is an atypical orphan NR (nuclear receptor) that functions as a transcriptional co-repressor by interacting with a diverse set of NRs and transcriptional factors. HNF-6 (hepatocyte nuclear factor-6) is a key regulatory factor in pancreatic development, endocrine differentiation and the formation of the biliary tract, as well as glucose metabolism. In this study, we have investigated the function of SHP as a putative repressor of HNF-6. Using transient transfection assays, we have shown that SHP represses the transcriptional activity of HNF-6. Confocal microscopy revealed that both SHP and HNF-6 co-localize in the nuclei of cells. SHP physically interacted with HNF-6 in protein-protein association assays in vitro. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays demonstrated that SHP inhibits the DNA-binding activity of HNF-6 to an HNF-6-response element consensus sequence, and the HNF-6 target region of the endogenous G6Pase (glucose 6-phosphatase) promoter respectively. Northern blot analysis of HNF-6 target genes in cells infected with adenoviral vectors for SHP and SHP siRNAs (small inhibitory RNAs) indicated that SHP represses the expression of endogenous G6Pase and PEPCK (phosphoenolpyruvate carboxykinase). Our results suggest that HNF-6 is a novel target of SHP in the regulation of gluconeogenesis.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources