Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jun;19(3):221-8.
doi: 10.1097/MOL.0b013e3282ffaf82.

Intestinal lipoprotein overproduction in insulin-resistant states

Affiliations
Review

Intestinal lipoprotein overproduction in insulin-resistant states

Khosrow Adeli et al. Curr Opin Lipidol. 2008 Jun.

Abstract

Purpose of review: Excessive postprandial lipemia is highly prevalent in obese and insulin-resistant/type 2 diabetic individuals and substantially increases the risk of atherosclerosis and cardiovascular disease. This article will review our current understanding of the link between insulin resistance and intestinal lipoprotein overproduction and highlight some of the key recent findings in the field.

Recent findings: Emerging evidence from several animal models of insulin resistance as well as insulin-resistant humans clearly supports the link between insulin resistance and aberrant intestinal lipoprotein metabolism. In insulin-resistant states, elevated free fatty acid flux into the intestine, downregulation of intestinal insulin signaling and upregulation of microsomal triglyceride transfer protein all appear to stimulate intestinal lipoprotein production. Gut peptides, GLP-1 and GLP-2, may be important regulators of intestinal lipid absorption and lipoprotein production.

Summary: Available evidence in humans and animal models strongly favors the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of triglyceride-rich lipoproteins. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors all contribute to the enhanced formation and secretion of triglyceride-rich lipoproteins.

PubMed Disclaimer

Publication types

LinkOut - more resources