Resonance of the epidemic threshold in a periodic environment
- PMID: 18461330
- DOI: 10.1007/s00285-008-0183-1
Resonance of the epidemic threshold in a periodic environment
Abstract
Resonance between some natural period of an endemic disease and a seasonal periodic contact rate has been the subject of intensive study. This paper does not focus on resonance for endemic diseases but on resonance for emerging diseases. Periodicity can have an important impact on the initial growth rate and therefore on the epidemic threshold. Resonance occurs when the Euler-Lotka equation has a complex root with an imaginary part (i.e., a natural frequency) close to the angular frequency of the contact rate and a real part not too far from the Malthusian parameter. This is a kind of continuous-time analogue of work by Tuljapurkar on discrete-time population models, which in turn was motivated by the work by Coale on continuous-time demographic models with a periodic birth. We illustrate this resonance phenomenon on several simple epidemic models with contacts varying periodically on a weekly basis, and explain some surprising differences, e.g., between a periodic SEIR model with an exponentially distributed latency and the same model but with a fixed latency.
Comment in
-
On the definition of the reproductive value: response to the discussion by Bacaër and Abdurahman.J Math Biol. 2009 Nov;59(5):651-7. doi: 10.1007/s00285-008-0246-3. Epub 2009 Jan 15. J Math Biol. 2009. PMID: 19145433
Similar articles
-
The effect of using different types of periodic contact rate on the behaviour of infectious diseases: a simulation study.Comput Biol Med. 2007 Nov;37(11):1582-90. doi: 10.1016/j.compbiomed.2007.02.007. Epub 2007 Apr 23. Comput Biol Med. 2007. PMID: 17452036
-
Seasonally varying epidemics with and without latent period: a comparative simulation study.Math Med Biol. 2007 Mar;24(1):1-15. doi: 10.1093/imammb/dql023. Math Med Biol. 2007. PMID: 17317756
-
Seasonality and period-doubling bifurcations in an epidemic model.J Theor Biol. 1984 Oct 21;110(4):665-79. doi: 10.1016/s0022-5193(84)80150-2. J Theor Biol. 1984. PMID: 6521486
-
Networks and epidemic models.J R Soc Interface. 2005 Sep 22;2(4):295-307. doi: 10.1098/rsif.2005.0051. J R Soc Interface. 2005. PMID: 16849187 Free PMC article. Review.
-
Perspectives on the basic reproductive ratio.J R Soc Interface. 2005 Sep 22;2(4):281-93. doi: 10.1098/rsif.2005.0042. J R Soc Interface. 2005. PMID: 16849186 Free PMC article. Review.
Cited by
-
Determination of optimal vaccination strategies using an orbital stability threshold from periodically driven systems.J Math Biol. 2014 Feb;68(3):763-84. doi: 10.1007/s00285-013-0648-8. Epub 2013 Feb 14. J Math Biol. 2014. PMID: 23408124
-
Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics.J Math Biol. 2017 May;74(6):1351-1395. doi: 10.1007/s00285-016-1054-9. Epub 2016 Sep 19. J Math Biol. 2017. PMID: 27647127
-
Genealogy with seasonality, the basic reproduction number, and the influenza pandemic.J Math Biol. 2011 May;62(5):741-62. doi: 10.1007/s00285-010-0354-8. Epub 2010 Jul 6. J Math Biol. 2011. PMID: 20607242
-
On the biological interpretation of a definition for the parameter R₀ in periodic population models.J Math Biol. 2012 Oct;65(4):601-21. doi: 10.1007/s00285-011-0479-4. Epub 2011 Oct 11. J Math Biol. 2012. PMID: 21987087
-
Optimization of an amplification protocol for misfolded proteins by using relaxed control.J Math Biol. 2015 Jan;70(1-2):289-327. doi: 10.1007/s00285-014-0768-9. Epub 2014 Feb 25. J Math Biol. 2015. PMID: 24567169
References
MeSH terms
LinkOut - more resources
Full Text Sources