The genomes of the family Rhizobiaceae: size, stability, and rarely cutting restriction endonucleases
- PMID: 1846148
- PMCID: PMC207062
- DOI: 10.1128/jb.173.2.704-709.1991
The genomes of the family Rhizobiaceae: size, stability, and rarely cutting restriction endonucleases
Abstract
The lack of high-resolution genetic or physical maps for the family Rhizobiaceae limits our understanding of this agronomically important bacterial family. On the basis of statistical analyses of DNA sequences of the Rhizobiaceae and direct evaluation by pulsed-field agarose gel electrophoresis (PFE), five restriction endonucleases with AT-rich target sites were identified as the most rarely cutting: AseI (5'-ATTAAT-3'), DraI (5'-TTTAAA-3'), SpeI (5'-ACTAGT-3'), SspI (5'-AATAAT-3'), and XbaI (5'-TCTAGA-3'). We computed the sizes of the genomes of Bradyrhizobium japonicum USDA 424 and Rhizobium meliloti 1021 by adding the sizes of DNA fragments generated by SpeI digests. The genome sizes of R. meliloti 1021 and B. japonicum USDA 424 were 5,379 +/- 282.5 kb and 6,195 +/- 192.4 kb, respectively. We also compared the organization of the genomes of free-living and bacteroid forms of B. japonicum. No differences between the PFE-resolved genomic fingerprints of free-living and mature (35 days after inoculation) bacteroids of B. japonicum USDA 123 and USDA 122 were observed. Also, B. japonicum USDA 123 genomic fingerprints were unchanged after passage through nodules and after maintenance on a rich growth medium for 100 generations. We conclude that large-scale DNA rearrangements are not seen in mature bacteroids or during free-living growth on rich growth media under laboratory conditions.
Similar articles
-
Genome analysis of Bradyrhizobium japonicum serocluster 123 field isolates by using field inversion gel electrophoresis.Appl Environ Microbiol. 1990 Jun;56(6):1949-53. doi: 10.1128/aem.56.6.1949-1953.1990. Appl Environ Microbiol. 1990. PMID: 2383015 Free PMC article.
-
Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization.J Bacteriol. 1989 Nov;171(11):5840-9. doi: 10.1128/jb.171.11.5840-5849.1989. J Bacteriol. 1989. PMID: 2553662 Free PMC article.
-
Isolation and characterization of the DNA region encoding nodulation functions in Bradyrhizobium japonicum.J Bacteriol. 1985 Dec;164(3):1301-8. doi: 10.1128/jb.164.3.1301-1308.1985. J Bacteriol. 1985. PMID: 2999080 Free PMC article.
-
Molecular genetics of the glutamine synthetases in Rhizobium species.Crit Rev Microbiol. 1994;20(2):117-23. doi: 10.3109/10408419409113551. Crit Rev Microbiol. 1994. PMID: 7915906 Review.
-
Specialized vectors for members of Rhizobiaceae and other gram-negative bacteria.Biotechnology. 1988;10:333-42. doi: 10.1016/b978-0-409-90042-2.50022-2. Biotechnology. 1988. PMID: 2850045 Review. No abstract available.
Cited by
-
Electrophoretic separation of the three Rhizobium meliloti replicons.J Bacteriol. 1991 Aug;173(16):5173-80. doi: 10.1128/jb.173.16.5173-5180.1991. J Bacteriol. 1991. PMID: 1860826 Free PMC article.
-
Physical map of the genome of Rhizobium meliloti 1021.J Bacteriol. 1993 Nov;175(21):6945-52. doi: 10.1128/jb.175.21.6945-6952.1993. J Bacteriol. 1993. PMID: 8226638 Free PMC article.
-
Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system.J Bacteriol. 2001 Aug;183(16):4709-17. doi: 10.1128/JB.183.16.4709-4717.2001. J Bacteriol. 2001. PMID: 11466273 Free PMC article.
-
Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome.J Bacteriol. 1993 Feb;175(3):613-22. doi: 10.1128/jb.175.3.613-622.1993. J Bacteriol. 1993. PMID: 8423135 Free PMC article.
-
Presence of two independent chromosomes in the Brucella melitensis 16M genome.J Bacteriol. 1993 Feb;175(3):701-5. doi: 10.1128/jb.175.3.701-705.1993. J Bacteriol. 1993. PMID: 8423146 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases