Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan 1;51(1):167-73.

Role of asbestos and active oxygen species in activation and expression of ornithine decarboxylase in hamster tracheal epithelial cells

Affiliations
  • PMID: 1846307

Role of asbestos and active oxygen species in activation and expression of ornithine decarboxylase in hamster tracheal epithelial cells

J P Marsh et al. Cancer Res. .

Abstract

Induction of ornithine decarboxylase (ODC) enzyme activity occurs after exposure of hamster tracheal epithelial (HTE) cells to asbestos and the soluble tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Since active oxygen species are implicated as mediators of asbestos-induced biological responses studies here were designed to examine whether active oxygen species generated by asbestos or oxidants caused increased ODC activity. In confluent HTE cells, significant blockage of chrysotile or crocidolite asbestos-stimulated ODC activity occurred with simultaneous addition of catalase, but not superoxide dismutase, to medium. The addition of xanthine plus xanthine oxidase caused a dose-dependent increase in ODC activity, which was inhibited significantly after addition of catalase or mannitol, indicating that H2O2 was the principal oxidant produced in that reaction. Addition of phenazine methosulfate, a redox reagent used to generate superoxide, resulted in significant elevation of ODC, which was inhibited by addition of superoxide dismutase but not catalase. Hydrogen peroxide added to culture medium also caused a potent increase in ODC activity inhabitable by catalase. Hypochlorous acid caused increases in ODC activity, although the magnitude of this response was less than that observed with other oxidants. Therefore, although all active oxygen species examined triggered ODC, less reduced species (O2- and H2O2) were more proficient than OH or a halogenated oxidant. All oxidants, except HOCl, caused a significant increase in [3H] thymidine incorporation at 24 or 48 h after their addition to HTE cells. In comparative studies, exposure of HTE cells to either asbestos or xanthine plus xanthine oxide increased the level of ODC mRNAs proportionate to oxidant concentration and the extent of enzyme induction. Thus, data indicate that H2O2 plays a major role in asbestos-stimulated ODC induction and proliferation of epithelial cells of the respiratory tract by altering the regulation of a gene critical to proliferation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources