Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan 25;266(3):1478-83.

Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase

Affiliations
  • PMID: 1846355
Free article

Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase

P R Gardner et al. J Biol Chem. .
Free article

Abstract

The activity of 6-phosphogluconate dehydratase was significantly lower in extracts of aerobically grown Escherichia coli deficient in superoxide dismutase (sodAsodB) and in mutants lacking the inducible manganese-containing superoxide dismutase (sodA), exposed to the redox-cycling agent paraquat, than in the parental strain. Growth of these strains on a gluconate minimal medium was also impaired under these conditions. The enzyme was most susceptible to dioxygen in superoxide dismutase (SOD)-free extracts, and exogenous SOD afforded a concentration-dependent protection against inactivation. The amount of SOD necessary for full protection was comparable to the amount normally present in extracts of aerobic E. coli (7-36 units/mg protein), and the rate of reaction of O2- with the dehydratase was estimated to be approximately 2.0 x 10(8) M-1 s-1. The dehydratase was much less sensitive to O2 or H2O2 than to O2-. The virtual substrate, alpha-glycerophosphate, provided partial protection. Iron chelators, thiol-reactive reagents, and oxidants, including nitrite and diamide, inactivated the enzyme. Fluoride ions stabilized the dehydratase and blocked the effect of oxidants. The O2(-)-sensitive target site is proposed to be an iron-sulfur cluster which is readily destroyed by oxidation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources