Classification models for early detection of prostate cancer
- PMID: 18464915
- PMCID: PMC2366047
- DOI: 10.1155/2008/218097
Classification models for early detection of prostate cancer
Abstract
We investigate the performance of different classification models and their ability to recognize prostate cancer in an early stage. We build ensembles of classification models in order to increase the classification performance. We measure the performance of our models in an extensive cross-validation procedure and compare different classification models. The datasets come from clinical examinations and some of the classification models are already in use to support the urologists in their clinical work.
Figures



Similar articles
-
Use of radial basis functions in computer-aided diagnosis of prostate cancer.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6422-5. doi: 10.1109/IEMBS.2011.6091585. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22255808
-
Clinical decision support system for early detection of prostate cancer from benign hyperplasia of prostate.Stud Health Technol Inform. 2013;192:928. Stud Health Technol Inform. 2013. PMID: 23920702
-
Automatic decision using dirty databases: application to prostate cancer diagnosis.Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1162-5. doi: 10.1109/IEMBS.2010.5626259. Annu Int Conf IEEE Eng Med Biol Soc. 2010. PMID: 21095907
-
[Indications for and results of radical prostatectomy].Urologe A. 2003 Sep;42(9):1203-11. doi: 10.1007/s00120-003-0429-x. Urologe A. 2003. PMID: 14504753 Review. German.
-
Reviewing ensemble classification methods in breast cancer.Comput Methods Programs Biomed. 2019 Aug;177:89-112. doi: 10.1016/j.cmpb.2019.05.019. Epub 2019 May 20. Comput Methods Programs Biomed. 2019. PMID: 31319964 Review.
Cited by
-
Prediction of breast cancer using artificial neural networks.J Med Syst. 2012 Oct;36(5):2901-7. doi: 10.1007/s10916-011-9768-0. Epub 2011 Aug 12. J Med Syst. 2012. PMID: 21837454
References
-
- Jemal A, Siegel R, Ward EM, Thun MJ. Atlanta, Ga, USA: Department of Epidemiology and Surveillance Research, American Cancer Society; 2006. Cancer facts & figures. Tech. Rep.
-
- Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. New York, NY, USA: Springer; 2001. (Springer Series in Statistics).
-
- Bard Y. Nonlinear Parameter Estimation. New York, NY, USA: Academic Press; 1974.
-
- Breiman L, Friedman J, Olshen R, Stone C. Classification and Regression Trees. Monterey, Calif, USA: Wadsworth and Brooks; 1993.
-
- Bishop CM. Neural Networks for Pattern Recognition. Oxford, UK: Oxford University Press; 1995.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical