Elevated oxidative stress and sensorimotor deficits but normal cognition in mice that cannot synthesize ascorbic acid
- PMID: 18466336
- PMCID: PMC2575028
- DOI: 10.1111/j.1471-4159.2008.05469.x
Elevated oxidative stress and sensorimotor deficits but normal cognition in mice that cannot synthesize ascorbic acid
Abstract
Oxidative stress is implicated in the cognitive deterioration associated with normal aging as well as neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. We investigated the effect of ascorbic acid (vitamin C) on oxidative stress, cognition, and motor abilities in mice null for gulono-gamma-lactone oxidase (Gulo). Gulo-/- mice are unable to synthesize ascorbic acid and depend on dietary ascorbic acid for survival. Gulo-/- mice were given supplements that provided them either with ascorbic acid levels equal to- or slightly higher than wild-type mice (Gulo-sufficient), or lower than physiological levels (Gulo-low) that were just enough to prevent scurvy. Ascorbic acid is a major anti-oxidant in mice and any reduction in ascorbic acid level is therefore likely to result in increased oxidative stress. Ascorbic acid levels in the brain and liver were higher in Gulo-sufficient mice than in Gulo-low mice. F(4)-neuroprostanes were elevated in cortex and cerebellum in Gulo-low mice and in the cortex of Gulo-sufficient mice. All Gulo-/- mice were cognitively normal but had a strength and agility deficit that was worse in Gulo-low mice. This suggests that low levels of ascorbic acid and elevated oxidative stress as measured by F(4)-neuroprostanes alone are insufficient to impair memory in the knockouts but may be responsible for the exacerbated motor deficits in Gulo-low mice, and ascorbic acid may have a vital role in maintaining motor abilities.
Figures
References
-
- Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;(10 Suppl):S18–S25. - PubMed
-
- Artmann A, Petersen G, Hellgren LI, Boberg J, Skonberg C, Nellemann C, Hansen SH, Hansen HS. Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochimica et biophysica acta. 2008 - PubMed
-
- Arzi A, Hemmati AA, Razian A. Effect of vitamins C and E on cognitive function in mouse. Pharmacol Res. 2004;49(3):249–252. - PubMed
-
- Austin L, Arendash GW, Gordon MN, Diamond DM, DiCarlo G, Dickey C, Ugen K, Morgan D. Short-term beta-amyloid vaccinations do not improve cognitive performance in cognitively impaired APP + PS1 mice. Behavioral neuroscience. 2003;117:478–484. - PubMed
-
- Baydas G, Yasar A, Tuzcu M. Comparison of the impact of melatonin on chronic ethanol-induced learning and memory impairment between young and aged rats. Journal of pineal research. 2005;39:346–352. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
