Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug;102(8):817-22.
doi: 10.1016/j.trstmh.2008.03.019. Epub 2008 May 7.

Fundamental issues in mosquito surveillance for arboviral transmission

Affiliations

Fundamental issues in mosquito surveillance for arboviral transmission

Weidong Gu et al. Trans R Soc Trop Med Hyg. 2008 Aug.

Abstract

Marked spatiotemporal variabilities in mosquito infection of arboviruses, exemplified by the transmission of West Nile virus (WNV) in America, require adaptive strategies for mosquito sampling, pool screening and data analyses. Currently there is a lack of reliable and consistent measures of risk exposure, which may compromise comparison of surveillance data. Based on quantitative reasoning, we critically examined fundamental issues regarding mosquito sampling design and estimation of transmission intensity. Two surveillance strategies were proposed, each with a distinct focus, i.e. targeted surveillance for detection of low rates of mosquito infection and extensive surveillance for evaluation of risk exposure with high levels of mosquito infection. We strongly recommend the use of indicators embodying both mosquito abundance and infection rates as measures of risk exposure. Aggregation of surveillance data over long periods of time and across broad areas obscures patterns of focal arboviral transmission. We believe that these quantitative issues, once addressed by mosquito surveillance programs, can improve the epidemiological intelligence of arbovirus transmission.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest: None declared.

Figures

Figure 1
Figure 1
The conditional probability of there being more than one infected mosquito in positive pools as a function of infection rates.

References

    1. Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, Crans W, Daniels TJ, Falco RC, Benedict M, Anderson M, McMillen L, Unnasch TR. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector Borne Zoonotic Dis. 2004;4:71–82. - PMC - PubMed
    1. Basanez MG, Collins RC, Porter CH, Little MP, Brandling-Bennett D. Transmission intensity and the patterns of Onchocerca volvulus infection in human communities. Am J Trop Med Hyg. 2002;67:669–679. - PubMed
    1. Beier JC, Killeen GF, Githure JI. Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999;61:109–113. - PubMed
    1. Bell JA, Mickelson NJ, Vaughan JA. West Nile virus in host-seeking mosquitoes within a residential neighborhood in Grand Forks, North Dakota. Vector Borne Zoonotic Dis. 2005;5:373–382. - PubMed
    1. Bernard KA, Kramer LD. West Nile virus activity in the United States, 2001. Viral Immunol. 2001;14:319–338. - PubMed

Publication types

MeSH terms