Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein
- PMID: 18467588
- DOI: 10.1126/science.1154800
Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein
Abstract
Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.
Similar articles
-
Kinetic modeling of charge-transfer quenching in the CP29 minor complex.J Phys Chem B. 2008 Oct 23;112(42):13418-23. doi: 10.1021/jp802730c. Epub 2008 Sep 30. J Phys Chem B. 2008. PMID: 18826191
-
Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29.Biochim Biophys Acta. 2009 Jun;1787(6):747-52. doi: 10.1016/j.bbabio.2009.02.006. Epub 2009 Feb 24. Biochim Biophys Acta. 2009. PMID: 19248759
-
A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II.FEBS Lett. 2007 Oct 2;581(24):4704-10. doi: 10.1016/j.febslet.2007.08.066. Epub 2007 Sep 4. FEBS Lett. 2007. PMID: 17850797
-
Photosynthetic acclimation: structural reorganisation of light harvesting antenna--role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins.FEBS J. 2008 Mar;275(6):1056-68. doi: 10.1111/j.1742-4658.2008.06262.x. FEBS J. 2008. PMID: 18318833 Review.
-
Toward an understanding of the mechanism of nonphotochemical quenching in green plants.Biochemistry. 2004 Jul 6;43(26):8281-9. doi: 10.1021/bi0494020. Biochemistry. 2004. PMID: 15222740 Review.
Cited by
-
Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching.Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5452-6. doi: 10.1073/pnas.1205561110. Epub 2013 Mar 18. Proc Natl Acad Sci U S A. 2013. PMID: 23509270 Free PMC article.
-
The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis.Plant Cell. 2009 Oct;21(10):3245-56. doi: 10.1105/tpc.108.064006. Epub 2009 Oct 30. Plant Cell. 2009. PMID: 19880802 Free PMC article.
-
Efficient photosynthesis in dynamic light environments: a chloroplast's perspective.Biochem J. 2019 Oct 15;476(19):2725-2741. doi: 10.1042/BCJ20190134. Biochem J. 2019. PMID: 31654058 Free PMC article. Review.
-
Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant.Plant Cell. 2009 Jun;21(6):1798-812. doi: 10.1105/tpc.109.066571. Epub 2009 Jun 23. Plant Cell. 2009. PMID: 19549928 Free PMC article.
-
Site-directed spin-labeling study of the light-harvesting complex CP29.Biophys J. 2009 May 6;96(9):3620-8. doi: 10.1016/j.bpj.2009.01.038. Biophys J. 2009. PMID: 19413967 Free PMC article.