Random-walk model of diffusion in three dimensions in brain extracellular space: comparison with microfiberoptic photobleaching measurements
- PMID: 18469079
- PMCID: PMC2483768
- DOI: 10.1529/biophysj.108.131466
Random-walk model of diffusion in three dimensions in brain extracellular space: comparison with microfiberoptic photobleaching measurements
Abstract
Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises approximately 20% of brain parenchymal volume and contains cell-cell gaps approximately 50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (alpha), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (D(o)/D). Experimental D(o)/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. D(o)/D for the small solute calcein in different regions of brain was in the range 3.0-4.1, and increased with brain cell swelling after water intoxication. D(o)/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured D(o)/D using realistic alpha, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted D(o)/D for different solute sizes. Also, the modeling showed unanticipated effects on D(o)/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.
Figures






Similar articles
-
Diffusion in the extracellular space in brain and tumors.Phys Biol. 2013 Aug;10(4):045003. doi: 10.1088/1478-3975/10/4/045003. Epub 2013 Aug 2. Phys Biol. 2013. PMID: 23913007 Free PMC article.
-
Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain.FASEB J. 2008 Mar;22(3):870-9. doi: 10.1096/fj.07-9468com. Epub 2007 Oct 26. FASEB J. 2008. PMID: 17965267
-
In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching.J Neurosci. 2004 Sep 15;24(37):8049-56. doi: 10.1523/JNEUROSCI.2294-04.2004. J Neurosci. 2004. PMID: 15371505 Free PMC article.
-
Contribution of dead-space microdomains to tortuosity of brain extracellular space.Neurochem Int. 2004 Sep;45(4):467-77. doi: 10.1016/j.neuint.2003.11.011. Neurochem Int. 2004. PMID: 15186912 Review.
-
Diffusion in brain extracellular space.Physiol Rev. 2008 Oct;88(4):1277-340. doi: 10.1152/physrev.00027.2007. Physiol Rev. 2008. PMID: 18923183 Free PMC article. Review.
Cited by
-
Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.J Gen Physiol. 2016 Dec;148(6):489-501. doi: 10.1085/jgp.201611684. Epub 2016 Nov 11. J Gen Physiol. 2016. PMID: 27836940 Free PMC article.
-
Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions.Biophys J. 2010 Sep 8;99(5):1342-9. doi: 10.1016/j.bpj.2010.06.016. Biophys J. 2010. PMID: 20816045 Free PMC article.
-
Diffusion in the extracellular space in brain and tumors.Phys Biol. 2013 Aug;10(4):045003. doi: 10.1088/1478-3975/10/4/045003. Epub 2013 Aug 2. Phys Biol. 2013. PMID: 23913007 Free PMC article.
-
The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter.MAGMA. 2013 Aug;26(4):345-70. doi: 10.1007/s10334-013-0371-x. Epub 2013 Feb 27. MAGMA. 2013. PMID: 23443883 Free PMC article. Review.
-
A model for extra-axonal diffusion spectra with frequency-dependent restriction.Magn Reson Med. 2015 Jun;73(6):2306-20. doi: 10.1002/mrm.25363. Epub 2014 Jul 15. Magn Reson Med. 2015. PMID: 25046481 Free PMC article.
References
-
- Mazel, T., Z. Simonova, and E. Sykova. 1998. Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport. 9:1299–1304. - PubMed
-
- Nicholson, C., and E. Sykova. 1998. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21:207–215. - PubMed
-
- Nicholson, C., K. C. Chen, S. Hrabetova, and L. Tao. 2000. Diffusion of molecules in brain extracellular space: theory and experiment. Prog. Brain Res. 125:129–154. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- HL73856/HL/NHLBI NIH HHS/United States
- R01 EY013574/EY/NEI NIH HHS/United States
- R01 EB000415/EB/NIBIB NIH HHS/United States
- R01 DK035124/DK/NIDDK NIH HHS/United States
- EY13574/EY/NEI NIH HHS/United States
- DK35124/DK/NIDDK NIH HHS/United States
- EB00415/EB/NIBIB NIH HHS/United States
- HL59198/HL/NHLBI NIH HHS/United States
- R01 HL073856/HL/NHLBI NIH HHS/United States
- P30 DK072517/DK/NIDDK NIH HHS/United States
- DK72517/DK/NIDDK NIH HHS/United States
- R01 HL059198/HL/NHLBI NIH HHS/United States
- R37 DK035124/DK/NIDDK NIH HHS/United States
- R37 EB000415/EB/NIBIB NIH HHS/United States
LinkOut - more resources
Full Text Sources
Miscellaneous