Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Aug 25;252(16):5750-5.

Partial purification of 6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydropterin triphosphate synthetase from chicken liver

  • PMID: 18471
Free article

Partial purification of 6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydropterin triphosphate synthetase from chicken liver

K Fukushima et al. J Biol Chem. .
Free article

Abstract

An enzyme that catalyzes the formation of 6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydropterin triphosphate (D-erythrodihydroneopterin triphosphate) and formic acid from GTP has been purified about 3700-fold from homogenates of chicken liver. The molecular weight of the enzyme, D-erythrodihydroneopterin triphosphate synthetase (GTP cyclohydrolase), has been estimated to be 125,000 by gel filtration on Ultrogel AcA-34. The enzyme functions optimally between pH 8.0 and 9.2 and is considerably heat-stable. No cofactors or metal ions have been demonstrated to be required for activity; however, the reaction is strongly inhibited by Cu2+ and Hg2+. GTP is the most efficient substrate, with GDP being 1/17 as active and guanosine, GMP, and ATP being inactive. The Km for GTP has been found to be 14 micrometer. Although the overall reaction catalyzed by D-erythrodihydroneopterin triphosphate synthetase from chicken liver is identical with that from Escherichia coli GTP cyclohydrolase, immunological studies show no apparent homology between the two enzymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources