Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008;10(1):17-27.
doi: 10.31887/DCNS.2008.10.1/ybenari.

Epilepsies and neuronal plasticity: for better or for worse?

Affiliations
Review

Epilepsies and neuronal plasticity: for better or for worse?

Yehezkel Ben-Ari. Dialogues Clin Neurosci. 2008.

Abstract

Extensive experimental investigations have confirmed that "seizures beget seizures." Thus, in adults, limbic seizures lead to cell loss, followed by the formation of novel excitatory synapses that contribute to generating further seizures. The triggering signal is an enhancement of synaptic efficacy, followed by a molecular cascade that triggers axonal sprouting. New synapses are aberrant, since they are formed in regions in which they are not present in controls. They also involve receptors that are not present in controls, and this facilitates the generation of seizures. Therefore, an aberrant form of reactive neuronal plasticity provides a substrate for the long-lasting sequelae of seizures. Since these events take place in brain structures involved in integrative and mnemonic functions, they will have an important impact. Reactive plasticity is documented for other insults and disorders, and may be the basis for the long-term progression of neurodegenerative disorders.

Numerosas investigaciones expérimentales han confirmado que “las convulsiones engendran convulsiones”. En adultos, las convulsiones limbicas producer) pérdida de células, proceso que es seguido por la formaciôn de nuevas sinapsis excitatorias, las cuales contribuyen a generar nuevas convulsiones. La serial gatillo es un aumento de la eficacia sinâpiica, seguida de una cascada molecular que genera brotes axonales. Las nuevas sinapsis son aberrantes y se forman en regiones que en los sujetos contrôles no présentât! este tipo de sinapsis, Ellas también incluyen receptores que tampoco estân présentes en los contrôles, y esto facilita la generaciôn de convulsiones, Por lo tanto, una forma aberrante de plasticidad neuronal reactiva provee un sustrato para tener convulsiones como una forma de secuelas a largo plazo, Estos acontecimientos iendrân un importante impacto ya que ocurren en estructuras cérébrales involucradas en funciones de integraciôn y mnémicas, La pi17asticidad reactiva esta documentada por oiros danos y trastornos, y puede ser la base de la progresiôn a largo plazo de trastornos neurodegeneratives.

Des données expérimentales suggèrent que « la crise entraîne la crise ». Ainsi, chez l'adulte, des crises comitiales d'origine limbique provoquent une perte neuronale, qui est suivie de la formation de nouvelles synapses excitatrices contribuant à la genèse de crises ultérieures. L'élément déclencheur initial est une augmentation de l'efficacité synaptique, suivie par l'activation d'une cascade moléculaire aboutissante la stimulation du bourgeonnement axonal. Les nouvelles synapses sont aberrantes car formées dans des régions dans lesquelles elles ne sont pas présentes chez les témoins. Elles mettent également en jeu des récepteurs absents chez ces derniers, qui facilitent la génération de crises comitiales. Ainsi, une forme aberrante de plasticité réactive fournit le substratum des séquelles à long-terme des crises d'épilepsie. Étant donné que ces réarrangements opèrent dans des structures impliquées dans des fonctions intégratives et mnésiques importantes (hippocampe, système limbique), ils vont avoir un impact important sur le cerveau. La plasticité réactive a été observée dans d'autres maladies neurologiques et neurodegeneratives et pourrait constituer la base de la progression à long terme de ces maladies.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. Sprouting of fibers in the hippocampus of epileptic rats. Morphological reconstruction of CA1hippocampal neurons intracellular/ injected with dyes weeks after an inaugurating status epilepticus. Note the extensive sprouting of axons, including to layers (the molecular layers) that are not innervated by pyramidal axons in controls. 0, stratum oriens; P, stratum pyramidale; R; stratum radiatum; S, subiculum Reproduced from ref 44: Esclapez M, Hirsch JC, Ben Ari Y, Bernard C. Newly formed excitatory pathways provide a substrate for hyperexcitabi I ity in experimental temporal lobe epilepsy. J Comp Neurol. 1999;408:449-460. Copyright © Wiley-Liss 1999
Figure 2.
Figure 2.. Electron microscopic identification of aberrant mossy fiber terminals on granule cells weeks after an inaugurating status. Note the formation of synapses in regions that are not innervated by mossy fibers in controls. These aberrant synapses have all the typical unique features of mossy fiber terminals, notably the large size and the enrichment in vesicles. D: Left and right columns show the upper and lower blades of the granular cell layer. Reproduced from ref 45: Represa A, Pollard H, Moreau J, Ghilini G, Khrestchatisky M, Ben-Ari Y. Mossy fiber sprouting in epileptic rats is associated with a transient increased expression of alpha-tubulin. Neurosci Lett. 1993;156:149-152. Copyright © Elsevier Scientific Publishers ireland 1993
Figure 3.
Figure 3.. Increased kainate receptors binding in regions innervated by aberrant mossy fibers. There is an increased density of receptors thirty days, but not 12 days, after an inaugurating status. The latency correlates with the time needed to form novel synapses. Reproduced from ref 19: Represa A, Tremblay E, Ben-Ari Y Kainate binding sites in the hippocampal mossy fibers: localization and plasticity. Neuroscience. 1987;20:739-748. Copyright © Elsevier Science 1987
Figure 4.
Figure 4.. Enhanced glutamatergic activity in epileptic hippocampus weeks after the inaugurating event. Slices were prepared from rats 4 weeks after the status produced by a single injection of pilocarpine. Note the considerable increase of spontaneous glutamatergic activity in the epileptic hippocampus (right side) versus a control slice (left). A: control; B: epileptic; C: The bottom left column illustrates the increase quantitatively (in frequency of glutamate EPSCs). The right columns show a similar increase in the miniature PSCs recorded after applications of tetrodoxin (TTX) to block activity-dependent currents. This suggests a longlasting increase in quantal release of transmitter in the epileptic network. EPSCs, excitatory postsynaptic currents; PSCs, postsynaptic currents
Figure 5.
Figure 5.. Seizures beget seizures in the immature hippocampus. A: A triple chamber is used (top left) with three compartments that accommodate each intact hippocampus and the connecting commissural connections. B: When the powerful convulsive agent kainate is applied, epileptiform activities are generated in the treated side and propagate rapidly to the naive side (top left). C: After repeated applications and seizure propagation to the naive side, tetrodoxin (TTX) a blocker of action potentials and of the propagation of seizures, was applied to the commissural chamber and effectively blocked seizures. Note (bottom part) that seizures were generated spontaneously by the naive hippocampus after disconnection form the treated side: there is formation of an epileptogenic mirror focus.

References

    1. Freund T., Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996;6:345–470. - PubMed
    1. Ylinen A., Bragin A., Nadasdy Z., et al. Sharp wave associated high-frequency oscillation (200Hz) in the intact hippocampus: network and intra-cellular mechanisms. J Neurosci. 1995;15:30–46. - PMC - PubMed
    1. Buzsaki G. Rhythms of the Brain. Oxford, UK; New York, NY: Oxford University Press; 2006
    1. Khazipov R., Sirota A., Leinekugel X., Holmes GL., Ben Ari Y., Buzsaki G. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature. 2004;432:758–761. - PubMed
    1. Leinekugel X., Khazipov R., Cannon R., Hirase H., Ben Ari Y., Buzsaki G. Correlated bursts of activity in the neonatal hippocampus in vivo. Science. 2002;296:2049–2052. - PubMed

MeSH terms

Substances