Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;26(11):1520-5.
doi: 10.1002/jor.20633.

Tumor interstitial fluid pressure may regulate angiogenic factors in osteosarcoma

Affiliations
Free article

Tumor interstitial fluid pressure may regulate angiogenic factors in osteosarcoma

Saminathan S Nathan et al. J Orthop Res. 2008 Nov.
Free article

Abstract

We have previously shown that osteosarcomas (OS) have states of increased interstitial fluid pressure (IFP), which correlate with increased proliferation and chemosensitivity. In this study, we hypothesized that constitutively raised IFP in OS regulates angiogenesis. Sixteen patients with the clinical diagnosis of OS underwent blood flow and IFP readings by the wick-in-needle method at the time and location of open biopsy. Vascularity was determined by capillary density in the biopsy specimens. We performed digital image analysis of immunohistochemical staining for CD31, VEGF-A, VEGF-C, and TPA on paraffin-embedded tissue blocks of the biopsy samples. Clinical results were validated in a pressurized cell culture system. Interstitial fluid pressures in the tumors (mean 33.5 +/- SD 17.2 mmHg) were significantly higher (p = 0.00001) than that in normal tissue (2.9 +/- 5.7 mmHg). Pressure readings were significantly higher in low vascularity tumors compared to high vascularity tumors (p < 0.001). In the OS cell lines, growth in a pressurized environment was associated with VEGF-A downregulation, VEGF-C upregulation, and TPA upregulation. The reverse was seen in the OB cell line. Growth in the HUVEC cell line was not significantly inhibited in a pressurized environment. Immunohistochemical assessment for VEGF-A (p = 0.01), VEGF-C (p = 0.008), and TPA (p = 0.0001) translation were consistent with the findings on PCR. Our data suggests that some molecules in angiogenesis are regulated by changes in IFP.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources