Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008;10(3):R55.
doi: 10.1186/ar2424. Epub 2008 May 12.

Characteristics of T-cell large granular lymphocyte proliferations associated with neutropenia and inflammatory arthropathy

Affiliations
Comparative Study

Characteristics of T-cell large granular lymphocyte proliferations associated with neutropenia and inflammatory arthropathy

Monika Prochorec-Sobieszek et al. Arthritis Res Ther. 2008.

Abstract

Introduction: The purpose of this study was to analyze the data of patients with T-cell large granular lymphocyte (T-LGL) lymphocytosis associated with inflammatory arthropathy or with no arthritis symptoms.

Methods: Clinical, serological as well as histopathological, immunohistochemical, and flow cytometric evaluations of blood/bone marrow of 21 patients with T-LGL lymphocytosis were performed. The bone marrow samples were also investigated for T-cell receptor (TCR) and immunoglobulin (IG) gene rearrangements by polymerase chain reaction with heteroduplex analysis.

Results: Neutropenia was observed in 21 patients, splenomegaly in 10, autoimmune diseases such as rheumatoid arthritis (RA) in 9, unclassified arthritis resembling RA in 2, and autoimmune thyroiditis in 5 patients. T-LGL leukemia was recognized in 19 cases. Features of Felty syndrome were observed in all RA patients, representing a spectrum of T-LGL proliferations from reactive polyclonal through transitional between reactive and monoclonal to T-LGL leukemia. Bone marrow trephines from T-LGL leukemia patients showed interstitial clusters and intrasinusoidal linear infiltrations of CD3+/CD8+/CD57+/granzyme B+ lymphocytes, reactive lymphoid nodules, and decreased or normal granulocyte precursor count with left-shifted maturation. In three-color flow cytometry (FCM), T-LGL leukemia cells demonstrated CD2, CD3, and CD8 expression as well as a combination of CD16, CD56, or CD57. Abnormalities of other T-cell antigen expressions (especially CD5, CD7, and CD43) were also detected. In patients with polyclonal T-LGL lymphocytosis, T cells were dispersed in the bone marrow and the expression of pan-T-cell antigens in FCM was normal. Molecular studies revealed TCRB and TCRG gene rearrangements in 13 patients and TCRB, TCRG, and TCRD in 4 patients. The most frequently rearranged regions of variable genes were Vbeta-Jbeta1, Jbeta2 and Vgamma If Vgamma10-Jgamma. Moreover, in 4 patients, additional rearrangements of IG kappa and lambda variable genes of B cells were also observed.

Conclusion: RA and neutropenia patients represented a continuous spectrum of T-LGL proliferations, although monoclonal expansions were most frequently observed. The histopathological pattern and immunophenotype of bone marrow infiltration as well as molecular characteristics were similar in T-LGL leukemia patients with and without arthritis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Histopathological features of bone marrow in patients with arthritis and T-cell large granular lymphocyte (T-LGL) lymphocytosis. (a) Patient 1 with rheumatoid arthritis (RA) and T-LGL leukemia. Staining for CD57 demonstrates intrasinusoidal linear arrays and interstitial clusters of T cells (EnVision stain, ×100). (b) Granzyme B highlights cytotoxic granules in these cells (EnVision stain, ×200). (c) Patient 10 with polyclonal T-LGL lymphocytosis. Staining for CD8 shows dispersed T cells (EnVision stain, ×200). (d) Patient 9 with unclassified arthritis, T-LGL leukemia, and IGKV and IGLV gene rearrangements. CD3 staining shows interstitial and nodular infiltration of T cells (EnVision stain, ×100). (e) Patient 9. The lymphoid nodule contains few CD20+ B cells (EnVision stain, ×200). (f) Patient 7 with RA and T-LGL leukemia. A decreased count of granulocytic precursors (myeloperoxydase+) is shown (EnVision stain, ×200). IGKV, immunoglobulin kappa variable; IGLV, immunoglobulin lambda variable
Figure 2
Figure 2
Flow cytometric analyses of patient 15 with T-cell large granular lymphocyte leukemia. (a) CD8+CD4- leukemic cells. (b) CD3+/CD45RA+ leukemic cells. (c) CD2+/CD7- leukemic cells and double-stained population in the region R2 consistent with normal T lymphocytes. (d) CD5-/CD25- leukemic cells and CD5+/CD25-/+ expression on normal T lymphocytes in the region R3. (e) CD7- leukemia cells express slightly weaker levels of CD43 compared with normal CD43+higherCD7+ cells consistent with normal T lymphocytes in the region R2. (f) CD3+ population with coexistence of CD16 antigens. (g) CD3+CD56- leukemic cells. (h) CD2+CD57- leukemic cells. CD2+CD57+-reactive T lymphocytes in the region R2. (i) Leukemic cells are positive for CD3 and TCRαβ. FITC, fluorescein isothiocyanate; PE, phycoerythrin; TCR, T-cell receptor.
Figure 3
Figure 3
Ethidium bromide-stained polyacrylamide gel showing polymerase chain reaction products derived from TCR gene rearrangements in patients with rheumatoid arthritis and T-cell large granular lymphocyte (T-LGL) proliferations. (a) Polyclonal expansion of T-LGLs in patient 10. Lane 1: TCRB gene rearrangement–negative, polyclonal smear (tube A); lane 2: TCRB gene rearrangement-negative, polyclonal smear (tube B); lane 3: TCRB gene rearrangement-negative, polyclonal smear (tube C); lane 4: standard 50 base pairs (bp); lane 5: TCRG gene rearrangement-negative, polyclonal smear (tube A); lane 6: TCRG gene rearrangement-negative, polyclonal smear (tube B); and lane 7: TCRD gene rearrangement-negative, polyclonal smear. (b) Monoclonal expansion in polyclonal background in patient 7. Lane 1: TCRG gene rearrangement: monoclonal product 180 bp (i) in tube A; lane 2: TCRG gene rearrangement: monoclonal product 210 bp (ii) in polyclonal background (tube B); lane 3: TCRD gene rearrangement: monoclonal product 160 bp (iii); lane 4: TCRB (tube A) gene rearrangement-negative, polyclonal smear; lane 5: standard 50 bp; lane 6: TCRB (tube B) gene rearrangement-negative, polyclonal smear; and lane 7: TCRB (tube C) gene rearrangement-negative, polyclonal smear. (c) Monoclonal gene rearrangements in patient 1 with T-LGL leukemia. Lane 1: TCRB gene rearrangement-negative (tube A); lane 2: TCRB gene rearrangement-positive, monoclonal product 250 bp (iv) in tube B; lane 3: TCRB (tube C): gene rearrangement-negative, polyclonal smear; lane 4: standard 50 bp; lane 5: TCRG gene rearrangement-positive, monoclonal product 230 bp (v) in tube A; lane 6: TCRG gene rearrangement-positive, monoclonal product 180 bp (vi) in tube B; and lane 7: TCRD gene rearrangement-negative, polyclonal smear. TCR, T-cell receptor.

References

    1. Wallis WJ, Loughran TP, Jr, Kadin ME, Clark EA, Starkebaum GA. Polyarthritis and neutropenia associated with circulating large granular lymphocytes. Ann Intern Med. 1985;103:357–362. - PubMed
    1. Barton JC, Prasthofer EF, Egan ML, Heck LW, Koopman WJ, Grossi CE. Rheumatoid arthritis associated with expanded populations of granular lymphocytes. Ann Intern Med. 1986;104:314–323. - PubMed
    1. Snowden N, Bhavnani M, Swinson DR, Kendra JR, Dennett C, Carrington P, Walsh S, Pumphrey RS. Large granular T lymphocytes, neutropenia and polyarthropathy: an underdiagnosed syndrome? Q J Med. 1991;78:65–76. - PubMed
    1. Langerak AW, Sandberg Y, van Dongen JJ. Spectrum of T-large granular lymphocyte lymphoproliferations: ranging from expanded activated effector T cells to T-cell leukaemia. Br J Haematol. 2003;123:561–562. doi: 10.1046/j.1365-2141.2003.04647.x. - DOI - PubMed
    1. Sokol L, Loughran TP., Jr Large granular lymphocyte leukemia. Oncologist. 2006;11:263–273. doi: 10.1634/theoncologist.11-3-263. - DOI - PubMed

Publication types

MeSH terms