Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May 15;3(5):316-22.
doi: 10.1016/j.chom.2008.03.008.

Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B

Affiliations
Free article

Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B

Horacio Bach et al. Cell Host Microbe. .
Free article

Abstract

Entry into host macrophages and evasion of intracellular destruction mechanisms, including phagosome-lysosome fusion, are critical elements of Mycobacterium tuberculosis (Mtb) pathogenesis. To achieve this, the Mtb genome encodes several proteins that modify host signaling pathways. PtpA, a low-molecular weight tyrosine phosphatase, is a secreted Mtb protein of unknown function. The lack of tyrosine kinases in the Mtb genome suggests that PtpA may modulate host tyrosine phosphorylated protein(s). We report that a genetic deletion of ptpA attenuates Mtb growth in human macrophages, and expression of PtpA-neutralizing antibodies simulated this effect. We identify VPS33B, a regulator of membrane fusion, as a PtpA substrate. VPS33B and PtpA colocalize in Mtb-infected human macrophages. PtpA secretion combined with active-phosphorylated VPS33B inhibited phagosome-lysosome fusion, a process arrested in Mtb infections. These results demonstrate that PtpA is essential for Mtb intracellular persistence and identify a key host regulatory pathway that is inactivated by Mtb.

PubMed Disclaimer

Publication types

MeSH terms

Substances