Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 May;54(4):750-62.
doi: 10.1111/j.1365-313X.2008.03436.x.

Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides

Affiliations
Free article
Review

Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides

Oliver Yu et al. Plant J. 2008 May.
Free article

Abstract

Plants produce large amounts of phenylpropanoids, both in terms of molecular diversity and absolute quantity of these compounds. The phenylpropanoids, and the related plant polyketides, have multiple biological functions. They serve to attract pollinators, support secondary cell-wall growth, provide protection against various plant diseases, and interact with beneficial soil microbes. Their basic chemical properties also make them useful in the biofuel and biomaterial industries. Phenylpropanoid metabolism begins with the amino acid phenylalanine, which feeds into various biosynthetic pathways that generate a wide range of structurally related polyphenolic compounds. This review focuses on four sub-groups of these polyphenolic compounds - polyketides, stilbenes, isoflavones and catechins. We discuss the biosynthesis of these molecules, their physiological role in plants, and their striking pharmacological and physiological effects on humans. This review also highlights metabolic engineering efforts aimed at increasing or decreasing the amounts of each class of compound in various model plants and crops.

PubMed Disclaimer

LinkOut - more resources