Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2008 May 14;3(5):e2158.
doi: 10.1371/journal.pone.0002158.

Preventive antibacterial therapy in acute ischemic stroke: a randomized controlled trial

Affiliations
Randomized Controlled Trial

Preventive antibacterial therapy in acute ischemic stroke: a randomized controlled trial

Hendrik Harms et al. PLoS One. .

Abstract

Background: Pneumonia is a major risk factor of death after acute stroke. In a mouse model, preventive antibacterial therapy with moxifloxacin not only prevents the development of post-stroke infections, it also reduces mortality, and improves neurological outcome significantly. In this study we investigate whether this approach is effective in stroke patients.

Methods: Preventive ANtibacterial THERapy in acute Ischemic Stroke (PANTHERIS) is a randomized, double-blind, placebo-controlled trial in 80 patients with severe, non-lacunar, ischemic stroke (NIHSS>11) in the middle cerebral artery (MCA) territory. Patients received either intravenous moxifloxacin (400 mg daily) or placebo for 5 days starting within 36 hours after stroke onset. Primary endpoint was infection within 11 days. Secondary endpoints included neurological outcome, survival, development of stroke-induced immunodepression, and induction of bacterial resistance.

Findings: On intention-to treat analysis (79 patients), the infection rate at day 11 in the moxifloxacin treated group was 15.4% compared to 32.5% in the placebo treated group (p = 0.114). On per protocol analysis (n = 66), moxifloxacin significantly reduced infection rate from 41.9% to 17.1% (p = 0.032). Stroke associated infections were associated with a lower survival rate. In this study, neurological outcome and survival were not significantly influenced by treatment with moxifloxacin. Frequency of fluoroquinolone resistance in both treatment groups did not differ. On logistic regression analysis, treatment arm as well as the interaction between treatment arm and monocytic HLA-DR expression (a marker for immunodepression) at day 1 after stroke onset was independently and highly predictive for post-stroke infections.

Interpretation: PANTHERIS suggests that preventive administration of moxifloxacin is superior in reducing infections after severe non-lacunar ischemic stroke compared to placebo. In addition, the results emphasize the pivotal role of immunodepression in developing post-stroke infections.

Trial registration: Controlled-Trials.com ISRCTN74386719.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: HH, AM, KP, UD, EH, SB, and CM received speakers' honoraria from Bayer Vital GmbH. A patent application on anti-infective agents and immunmodulators used for preventive therapy following an acute cerebrovascular accident has been filed to the European Patent Office (PCT/EP03/02246); Patent owner: Charité Universitaetsmedizin Berlin; Patent inventors: AM, CM, KP, EH, UD.

Figures

Figure 1
Figure 1. PANTHERIS trial profile.
Figure 2
Figure 2. Time course of CRP serum concentration.
Time course of CRP levels in placebo and verum group shown by boxplots. Number of patients is indicated by N. CRP levels in the moxifloxacin group are significant lower compared to the placebo group. The p-values for the main effects are <0.0001 for day of CRP measurement and 0.0186 for treatment (multivariate analysis of variance for repeated measurements on logarithmically transformed data, no interaction model). The dependency between treatment and day of CRP measurement has a p-value of 0.0845 (interaction model). In patients of the verum group CRP concentration are significantly lower compared to patients of the placebo group 3, 5, 6, and 7 days after stroke (* p<0.05; ** p<0.005).
Figure 3
Figure 3. Kaplan-Meier curves of survival in both treatment groups.
Crosses indicate time points when patients were lost to follow-up (‘censored’; n = 7; verum n = 3, placebo n = 4 placebo). Seven (verum n = 3, placebo n = 4) of 79 patients (8.9%) died within 11 days after stroke onset. Within 6 month after stroke 13 (verum n = 6, placebo n = 7) of 72 patients (18.1%) died.
Figure 4
Figure 4. Kaplan-Meier curves of survival in patients with and without infections.
Crosses indicate time points when patients were lost to follow-up (‘censored’; n = 7, infection n = 1, no infection n = 6). Seven (no infection n = 5, infection n = 2) of 79 patients (8.9%) died within 11 days after stroke onset. Within 6 month after stroke 13 (infection n = 6, no infection n = 7) of 72 patients (18.1%) died.
Figure 5
Figure 5. Time course in monocytic HLA-DR expression after stroke.
a: Monocytic HLA-DR expression is significantly reduced in all patients at days 1, 3, and 8 compared to 90 and 180 days after stroke (*** p<0.001). b: The time course of monocytic HLA-DR expression is not significantly different between patients from the placebo and verum groups. Dashed lines indicate the upper and lower reference range for monocytic HLA-DR levels in healthy individuals (5% percentile = 18036 mAb/cell; 95% percentile = 57958 mAb/cell).
Figure 6
Figure 6. Monocytic HLA-DR expression in patients with and without infections.
a: In the placebo group, monocytic HLA-DR expression in patients with infections is significantly reduced compared to patients without infections at day 1 (** p = 0.003), 3 (** p = 0.005), and 8 (*** p<0.001) days, but not at day 180 after stroke. b: In the verum group, monocytic HLA-DR expression is not significantly different between patients with and without infections. Dashed lines indicate the upper and lower reference range for monocytic HLA-DR levels in healthy individuals (5% percentile = 18036 mAb/cell; 95% percentile = 57958 mAb/cell).

References

    1. Davenport RJ, Dennis MS, Wellwood I, Warlow CP. Complications after acute stroke. Stroke. 1996;27:415–20. - PubMed
    1. Johnston KC, Li JY, Lyden PD, Hanson SK, Feasby TE, et al. Medical and neurological complications of ischemic stroke: experience from the RANTTAS trial. RANTTAS investigators. Stroke; 1998;29:447–53. - PubMed
    1. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immunedeficiency syndrome. Nat Rev Neurosci. 2005;6:775–86. - PubMed
    1. Langhorne P, Scott DJ, Robertson L, MacDonald J, Jones L, et al. Medical complications after stroke: a multicenter study. Stroke. 2000;31:1223–29. - PubMed
    1. Katzan IL, Cebul RD, Husak SH, Dawson NV, Baker DW. The effect of pneumonia on mortality among patients hospitalized for acute stroke. Neurology. 2003;60:620–25. - PubMed

Publication types

MeSH terms

Associated data