A GaAs polariton light-emitting diode operating near room temperature
- PMID: 18480820
- DOI: 10.1038/nature06979
A GaAs polariton light-emitting diode operating near room temperature
Abstract
The increasing ability to control light-matter interactions at the nanometre scale has improved the performance of semiconductor lasers in the past decade. The ultimate optimization is realized in semiconductor microcavities, in which strong coupling between quantum-well excitons and cavity photons gives rise to hybrid half-light/half-matter polariton quasiparticles. The unique properties of polaritons-such as stimulated scattering, parametric amplification, lasing, condensation and superfluidity-are believed to provide the basis for a new generation of polariton emitters and semiconductor lasers. Until now, polariton lasing and nonlinearities have only been demonstrated in optical experiments, which have shown the potential to reduce lasing thresholds by two orders of magnitude compared to conventional semiconductor lasers. Here we report an experimental realization of an electrically pumped semiconductor polariton light-emitting device, which emits directly from polariton states at a temperature of 235 K. Polariton electroluminescence data reveal characteristic anticrossing between exciton and cavity modes, a clear signature of the strong coupling regime. These findings represent a substantial step towards the realization of ultra-efficient polaritonic devices with unprecedented characteristics.
Comment in
-
Solid-state physics: polaritronics in view.Nature. 2008 May 15;453(7193):297-8. doi: 10.1038/453297a. Nature. 2008. PMID: 18480805 No abstract available.
Similar articles
-
High-temperature ultrafast polariton parametric amplification in semiconductor microcavities.Nature. 2001 Dec 13;414(6865):731-5. doi: 10.1038/414731a. Nature. 2001. PMID: 11742394
-
Hybrid organic-inorganic polariton laser.Sci Rep. 2017 Sep 12;7(1):11377. doi: 10.1038/s41598-017-11726-8. Sci Rep. 2017. PMID: 28900206 Free PMC article.
-
Polariton lasing vs. photon lasing in a semiconductor microcavity.Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15318-23. doi: 10.1073/pnas.2634328100. Epub 2003 Dec 12. Proc Natl Acad Sci U S A. 2003. PMID: 14673089 Free PMC article.
-
Exciton-Polaritons and Their Bose-Einstein Condensates in Organic Semiconductor Microcavities.Adv Mater. 2022 Jan;34(4):e2106095. doi: 10.1002/adma.202106095. Epub 2021 Dec 8. Adv Mater. 2022. PMID: 34881466 Review.
-
ZnO nanowire lasers.Nanoscale. 2011 Jul;3(7):2783-800. doi: 10.1039/c1nr00013f. Epub 2011 May 6. Nanoscale. 2011. PMID: 21552596 Review.
Cited by
-
Single-particle properties of topological Wannier excitons in bismuth chalcogenide nanosheets.Sci Rep. 2023 Apr 18;13(1):6337. doi: 10.1038/s41598-023-32740-z. Sci Rep. 2023. PMID: 37072513 Free PMC article.
-
Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice.Adv Sci (Weinh). 2024 Jun;11(21):e2400672. doi: 10.1002/advs.202400672. Epub 2024 Apr 12. Adv Sci (Weinh). 2024. PMID: 38605674 Free PMC article.
-
An electrically pumped polariton laser.Nature. 2013 May 16;497(7449):348-52. doi: 10.1038/nature12036. Nature. 2013. PMID: 23676752
-
Sub-millisecond Control of Neuronal Firing by Organic Light-Emitting Diodes.Front Bioeng Biotechnol. 2019 Oct 22;7:278. doi: 10.3389/fbioe.2019.00278. eCollection 2019. Front Bioeng Biotechnol. 2019. PMID: 31750295 Free PMC article.
-
Conductivity in organic semiconductors hybridized with the vacuum field.Nat Mater. 2015 Nov;14(11):1123-9. doi: 10.1038/nmat4392. Epub 2015 Sep 14. Nat Mater. 2015. PMID: 26366850
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous