Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Sep 27;441(3):433-42.
doi: 10.1016/0005-2760(76)90240-x.

Activity of cholinephosphotransferase, lysolecithin: lysolecithin acyltransferase and lysolecithin acyltransferase in the developing mouse lung

Activity of cholinephosphotransferase, lysolecithin: lysolecithin acyltransferase and lysolecithin acyltransferase in the developing mouse lung

V Oldenborg et al. Biochim Biophys Acta. .

Abstract

1. The present study presents the activity profiles of cholinephosphotransferase, lysolecithin:lysolecithin acyltransferase and lysolecithin acyltransferase at different stages of development of the mouse lung. 2. The specific activity of cholinephosphotransferase, a key enzyme in the de novo synthesis of phosphatidylcholine, increases during the later stages of fetal development until it reaches a maximal value at a gestational age of 17 days, i.e. 2 days before term. Thereafter, the activity of the enzyme declines again until around term. 2. The specific activity of lysolecithin:lysolecithin acyltransferase which catalyzes the transesterification between two molecules of 1-acyl-sn-glycero-3-phosphocholine, appears to be much lower than that of cholinephosphotransferase at gestational ages below 18 days. However, around day 18, the specific activity of lysolecithin:lysolecithin acyltransferase increases dramatically until it almost equals the maximal activity of cholinephosphotransferase measured on day 17. 4. The specific activity of lysolecithin acyltransferase, which catalyzes the direct acylation of 1-acyl-sn-glycero-3-phosphocholine, does not change significantly during the prenatal development and is lower than that of either lysolecithin:lysolecithin acyltransferase or cholinephosphotransferase at all stages of development. 5. These results are discussed in view of the possible role of these enzymes in the biosynthesis of pulmonary 1,2-dipalmitoyl-sn-glycero-3-phosphocholine.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources