Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun;17(6):857-72.
doi: 10.1109/TIP.2008.921328.

Design of linear equalizers optimized for the structural similarity index

Affiliations

Design of linear equalizers optimized for the structural similarity index

Sumohana S Channappayya et al. IEEE Trans Image Process. 2008 Jun.

Abstract

We propose an algorithm for designing linear equalizers that maximize the structural similarity (SSIM) index between the reference and restored signals. The SSIM index has enjoyed considerable application in the evaluation of image processing algorithms. Algorithms, however, have not been designed yet to explicitly optimize for this measure. The design of such an algorithm is nontrivial due to the nonconvex nature of the distortion measure. In this paper, we reformulate the nonconvex problem as a quasi-convex optimization problem, which admits a tractable solution. We compute the optimal solution in near closed form, with complexity of the resulting algorithm comparable to complexity of the linear minimum mean squared error (MMSE) solution, independent of the number of filter taps. To demonstrate the usefulness of the proposed algorithm, it is applied to restore images that have been blurred and corrupted with additive white gaussian noise. As a special case, we consider blur-free image denoising. In each case, its performance is compared to a locally adaptive linear MSE-optimal filter. We show that the images denoised and restored using the SSIM-optimal filter have higher SSIM index, and superior perceptual quality than those restored using the MSE-optimal adaptive linear filter. Through these results, we demonstrate that a) designing image processing algorithms, and, in particular, denoising and restoration-type algorithms, can yield significant gains over existing (in particular, linear MMSE-based) algorithms by optimizing them for perceptual distortion measures, and b) these gains may be obtained without significant increase in the computational complexity of the algorithm.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms