Age-related gene expression in Tourette syndrome
- PMID: 18485367
- PMCID: PMC2662336
- DOI: 10.1016/j.jpsychires.2008.03.012
Age-related gene expression in Tourette syndrome
Abstract
Because infection and immune responses have been implicated in the pathogenesis of Tourette syndrome (TS), we hypothesized that children with TS would have altered gene expression in blood compared to controls. In addition, because TS symptoms in childhood vary with age, we tested whether gene expression changes that occur with age in TS differ from normal control children. Whole blood was obtained from 30 children and adolescents with TS and 28 healthy children and adolescents matched for age, race, and gender. Gene expression (RNA) was assessed using whole genome Affymetrix microarrays. Age was analyzed as a continuous covariate and also stratified into three groups: 5-9 (common age for tic onset), 10-12 (when tics often peak), and 13-16 (tics may begin to wane). No global differences were found between TS and controls. However, expression of many genes and multiple pathways differed between TS and controls within each age group (5-9, 10-12, and 13-16), including genes involved in the immune-synapse, and proteasome- and ubiquitin-mediated proteolysis pathways. Notably, across age strata, expression of interferon response, viral processing, natural killer and cytotoxic T-lymphocyte cell genes differed. Our findings suggest age-related interferon, immune and protein degradation gene expression differences between TS and controls.
Figures







References
-
- A.P.A. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. 4. Washington, DC: American Psychiatric Association; 2000.
-
- Allen AJ, Leonard HL, Swedo SE. Case study: a new infection-triggered, autoimmune subtype of pediatric OCD and Tourette’s syndrome. J Am Acad Child Adolesc Psychiatry. 1995;34:307–11. - PubMed
-
- Barnes BJ, Moore PA, Pitha PM. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem. 2001;276:23382–90. - PubMed
-
- Bennett EJ, Bence NF, Jayakumar R, Kopito RR. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell. 2005;17:351–65. - PubMed
-
- Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical