Dynamic causal modelling of induced responses
- PMID: 18485744
- DOI: 10.1016/j.neuroimage.2008.03.026
Dynamic causal modelling of induced responses
Abstract
This paper describes a dynamic causal model (DCM) for induced or spectral responses as measured with the electroencephalogram (EEG) or the magnetoencephalogram (MEG). We model the time-varying power, over a range of frequencies, as the response of a distributed system of coupled electromagnetic sources to a spectral perturbation. The model parameters encode the frequency response to exogenous input and coupling among sources and different frequencies. The Bayesian inversion of this model, given data enables inferences about the parameters of a particular model and allows us to compare different models, or hypotheses. One key aspect of the model is that it differentiates between linear and non-linear coupling; which correspond to within and between-frequency coupling respectively. To establish the face validity of our approach, we generate synthetic data and test the identifiability of various parameters to ensure they can be estimated accurately, under different levels of noise. We then apply our model to EEG data from a face-perception experiment, to ask whether there is evidence for non-linear coupling between early visual cortex and fusiform areas.
Similar articles
-
Dynamic causal modeling of evoked responses in EEG and MEG.Neuroimage. 2006 May 1;30(4):1255-72. doi: 10.1016/j.neuroimage.2005.10.045. Epub 2006 Feb 9. Neuroimage. 2006. PMID: 16473023
-
Dynamic causal modelling of evoked potentials: a reproducibility study.Neuroimage. 2007 Jul 1;36(3):571-80. doi: 10.1016/j.neuroimage.2007.03.014. Epub 2007 Mar 27. Neuroimage. 2007. PMID: 17478106 Free PMC article.
-
Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG.Neuroimage. 2008 Jan 15;39(2):728-41. doi: 10.1016/j.neuroimage.2007.09.005. Epub 2007 Sep 14. Neuroimage. 2008. PMID: 17951076
-
Dynamic causal modeling for EEG and MEG.Hum Brain Mapp. 2009 Jun;30(6):1866-76. doi: 10.1002/hbm.20775. Hum Brain Mapp. 2009. PMID: 19360734 Free PMC article. Review.
-
Dynamic causal modelling: a critical review of the biophysical and statistical foundations.Neuroimage. 2011 Sep 15;58(2):312-22. doi: 10.1016/j.neuroimage.2009.11.062. Epub 2009 Dec 1. Neuroimage. 2011. PMID: 19961941 Review.
Cited by
-
Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease.Cereb Cortex. 2014 Nov;24(11):2873-83. doi: 10.1093/cercor/bht140. Epub 2013 Jun 2. Cereb Cortex. 2014. PMID: 23733911 Free PMC article.
-
Tinnitus Abnormal Brain Region Detection Based on Dynamic Causal Modeling and Exponential Ranking.Biomed Res Int. 2018 Jul 9;2018:8656975. doi: 10.1155/2018/8656975. eCollection 2018. Biomed Res Int. 2018. PMID: 30105255 Free PMC article.
-
Structure learning in coupled dynamical systems and dynamic causal modelling.Philos Trans A Math Phys Eng Sci. 2019 Dec 16;377(2160):20190048. doi: 10.1098/rsta.2019.0048. Epub 2019 Oct 28. Philos Trans A Math Phys Eng Sci. 2019. PMID: 31656140 Free PMC article.
-
A deep hierarchy of predictions enables online meaning extraction in a computational model of human speech comprehension.PLoS Biol. 2023 Mar 22;21(3):e3002046. doi: 10.1371/journal.pbio.3002046. eCollection 2023 Mar. PLoS Biol. 2023. PMID: 36947552 Free PMC article.
-
A dynamic causal model for evoked and induced responses.Neuroimage. 2012 Jan 2;59(1):340-8. doi: 10.1016/j.neuroimage.2011.07.066. Epub 2011 Jul 30. Neuroimage. 2012. PMID: 21835251 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources