Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Jul;212(1):166-78.
doi: 10.1016/j.expneurol.2008.03.022. Epub 2008 Apr 8.

Acute energy restriction triggers Wallerian degeneration in mouse

Affiliations
Comparative Study

Acute energy restriction triggers Wallerian degeneration in mouse

Susana Alvarez et al. Exp Neurol. 2008 Jul.

Abstract

Acute exposure of peripheral axons to the free radical Nitric Oxide (NO) may trigger conduction block and, if prolonged, Wallerian degeneration. It was hypothesized that this neurotoxic effect of NO may be due primarily to energy restriction by inhibition of mitochondrial respiration. We compared the neurotoxic effect of NO with the effect of the mitochondrial uncoupler 2,4-dinitrophenol (DNP) on electrically active axons of mouse sciatic nerve. The right tibial nerve was stimulated at the ankle. Muscle responses were recorded from plantar muscles and ascending nerve action potentials were recorded form the exposed sciatic nerve by means of a hook electrode. The sciatic nerve was focally immersed over a length of 1 cm in either phosphate buffered saline (PBS), a solution of approximately 4 microM NO obtained from 10 mM of the NO-donor DETA NONOate, or a solution of up to 1 mM DNP. Following 3 hours of 200 Hz stimulation, the nerves were washed in PBS for 1 hour, the surgical wounds were closed and the mice were left to recover. Following repetitive stimulation in PBS, the nerve responses recovered within 1 hour and the muscle responses within 1 day. The effects of focal acute exposure to NO or DNP were similar: (i) a transient conduction failure that rapidly normalized within one hour of washout and (ii) subsequent Wallerian degeneration of some axons confirmed at morphological studies. Taken together, these data support the hypothesis that neurotoxicity may be caused by energy restriction. Since the pharmacologic effect of NO and DNP was only transient, our data suggest that even a brief period of focal energy restriction can trigger Wallerian degeneration.

PubMed Disclaimer

Publication types

MeSH terms