cAMP-dependent signaling as a core component of the mammalian circadian pacemaker
- PMID: 18487196
- PMCID: PMC2735813
- DOI: 10.1126/science.1152506
cAMP-dependent signaling as a core component of the mammalian circadian pacemaker
Abstract
The mammalian circadian clockwork is modeled as transcriptional and posttranslational feedback loops, whereby circadian genes are periodically suppressed by their protein products. We show that adenosine 3',5'-monophosphate (cAMP) signaling constitutes an additional, bona fide component of the oscillatory network. cAMP signaling is rhythmic and sustains the transcriptional loop of the suprachiasmatic nucleus, determining canonical pacemaker properties of amplitude, phase, and period. This role is general and is evident in peripheral mammalian tissues and cell lines, which reveals an unanticipated point of circadian regulation in mammals qualitatively different from the existing transcriptional feedback model. We propose that daily activation of cAMP signaling, driven by the transcriptional oscillator, in turn sustains progression of transcriptional rhythms. In this way, clock output constitutes an input to subsequent cycles.
Figures




Comment in
-
Circadian rhythms. Integrating circadian timekeeping with cellular physiology.Science. 2008 May 16;320(5878):879-80. doi: 10.1126/science.1158619. Science. 2008. PMID: 18487177 No abstract available.
Similar articles
-
Differential cAMP gating of glutamatergic signaling regulates long-term state changes in the suprachiasmatic circadian clock.J Neurosci. 2000 Oct 15;20(20):7830-7. doi: 10.1523/JNEUROSCI.20-20-07830.2000. J Neurosci. 2000. PMID: 11027248 Free PMC article.
-
System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock.PLoS Biol. 2007 Feb;5(2):e34. doi: 10.1371/journal.pbio.0050034. PLoS Biol. 2007. PMID: 17298173 Free PMC article.
-
Nucleocytoplasmic shuttling of clock proteins.Methods Enzymol. 2005;393:418-35. doi: 10.1016/S0076-6879(05)93020-6. Methods Enzymol. 2005. PMID: 15817303
-
[Synchronization and genetic redundancy in circadian clocks].Med Sci (Paris). 2008 Mar;24(3):270-6. doi: 10.1051/medsci/2008243270. Med Sci (Paris). 2008. PMID: 18334175 Review. French.
-
Cell "circadian" cycle: new role for mammalian core clock genes.Cell Cycle. 2009 Mar 15;8(6):832-7. doi: 10.4161/cc.8.6.7869. Epub 2009 Mar 16. Cell Cycle. 2009. PMID: 19221497 Review.
Cited by
-
Role of miR-142-3p in the post-transcriptional regulation of the clock gene Bmal1 in the mouse SCN.PLoS One. 2013 Jun 5;8(6):e65300. doi: 10.1371/journal.pone.0065300. Print 2013. PLoS One. 2013. PMID: 23755214 Free PMC article.
-
Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design.J Med Chem. 2012 Oct 11;55(19):8549-58. doi: 10.1021/jm301189c. Epub 2012 Oct 1. J Med Chem. 2012. PMID: 22985069 Free PMC article.
-
The interplay between the PI3K/AKT pathway and circadian clock in physiologic and cancer-related pathologic conditions.Cell Prolif. 2024 Jul;57(7):e13608. doi: 10.1111/cpr.13608. Epub 2024 Feb 9. Cell Prolif. 2024. PMID: 38336976 Free PMC article. Review.
-
Sex Differences in Circadian Rhythms.Cold Spring Harb Perspect Biol. 2022 Jul 1;14(7):a039107. doi: 10.1101/cshperspect.a039107. Cold Spring Harb Perspect Biol. 2022. PMID: 35101914 Free PMC article. Review.
-
The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4.Neuron. 2019 Nov 20;104(4):724-735.e6. doi: 10.1016/j.neuron.2019.08.007. Epub 2019 Sep 12. Neuron. 2019. PMID: 31522764 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases