Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;41(1):35-44.
doi: 10.1677/JME-07-0154. Epub 2008 May 16.

Anti-proliferative effect of pro-inflammatory cytokines in cultured beta cells is associated with extracellular signal-regulated kinase 1/2 pathway inhibition: protective role of glucagon-like peptide -1

Affiliations

Anti-proliferative effect of pro-inflammatory cytokines in cultured beta cells is associated with extracellular signal-regulated kinase 1/2 pathway inhibition: protective role of glucagon-like peptide -1

M Blandino-Rosano et al. J Mol Endocrinol. 2008 Jul.

Abstract

Pancreatic beta-cell homeostasis is a balance between programmed cell death (apoptosis) and regeneration. Although autoimmune diabetes mellitus type 1 (DM1) is the most-studied cause of beta-cell mass loss by pro-inflammatory cytokine-induced apoptosis, influences of a pro-inflammatory environment on beta-cell regenerative response have been poorly studied. In this study, we assess the anti-proliferative effect of pro-inflammatory cytokines and glucose concentration on rat pancreatic beta cells and the potential protective role of glucagon-like peptide (GLP-1). Apoptotic and proliferating islet cells were stained using the DeadEnd Fluorimetric TUNEL System and 5-bromo-2'-deoxyuridine label respectively, in the presence-absence of varying concentrations of glucose, pro-inflammatory cytokines, and GLP-1. The potential signaling pathways involved were evaluated by western blot. Considerable anti-proliferative effects of pro-inflammatory cytokines interleukin (IL)-1beta, interferon (IFN)-gamma, and tumour necrosis factor-alpha (TNF-alpha) were observed. The effects were synergistic and independent of glucose concentration, and appeared to be mediated by the inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activation, the signaling pathway involved in beta-cell replication. GLP-1 completely reversed the cytokine-induced inhibition of ERK phosphorylation and increased beta-cell proliferation threefold in cytokine-treated cultures. While pro-inflammatory cytokines reduced islet cell ERK1/2 activation and beta-cell proliferation in pancreatic islet culture, GLP-1 was capable of reversing this effect. These data suggest a possible pharmacological application of GLP-1 in the treatment of early stage DM1, to prevent the loss of pancreatic beta cells as well as to delay the development of overt diabetes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources