Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;90(1):142-53.
doi: 10.1002/jbm.a.32069.

Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels

Affiliations

Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels

Sidi A Bencherif et al. J Biomed Mater Res A. 2009 Jul.

Abstract

An investigation of encapsulated plasmid DNA release from degradable poly(ethylene glycol)-co-poly(glycolic acid) hydrogels (PEG-co-PGA) is presented. We determined by varying the chemistry of the cross-linker group, significant variations in hydrogel degradation kinetics could be achieved to control the release profiles of plasmid DNA. We prepared three analogues of PEG-co-PGA hydrogels by a photopolymerization process and measured variation in degradation rates by monitoring mechanical properties and release of plasmid DNA. 1H 1D DOSY NMR (one-dimensional diffusion ordered nuclear magnetic resonance spectroscopy) was used to measure conversion of vinyl groups after photocross-linking. Nearly full vinyl conversion was reached after 10 min exposure under ultraviolet light. Gel electrophoresis analysis confirmed that plasmid DNA remained structurally intact after photoencapsulation and release from the gels. This approach provides an additional strategy for controlling the release of biologically active compounds from hydrogels.

PubMed Disclaimer

Publication types

LinkOut - more resources