Extensive contacts between ADAMTS13 exosites and von Willebrand factor domain A2 contribute to substrate specificity
- PMID: 18492952
- PMCID: PMC2518881
- DOI: 10.1182/blood-2008-04-148759
Extensive contacts between ADAMTS13 exosites and von Willebrand factor domain A2 contribute to substrate specificity
Abstract
The metalloprotease ADAMTS13 efficiently cleaves only the Tyr(1605)-Met(1606) bond in the central A2 domain of multimeric von Willebrand factor (VWF), even though VWF constitutes only 0.02% of plasma proteins. This remarkable specificity depends in part on binding of the noncatalytic ADAMTS13 spacer domain to the C-terminal alpha-helix of VWF domain A2. By kinetic analysis of recombinant ADAMTS13 constructs, we show that the first thrombospondin-1, Cys-rich, and spacer domains of ADAMTS13 interact with segments of VWF domain A2 between Gln(1624) and Arg(1668), and together these exosite interactions increase the rate of substrate cleavage by at least approximately 300-fold. Internal deletion of Gln(1624)-Arg(1641) minimally affected the rate of cleavage, indicating that ADAMTS13 does not require a specific distance between the scissile bond and auxiliary substrate binding sites. Smaller deletions of the P2-P9 or the P4'-P18' residues on either side of the Tyr(1605)-Met(1606) bond abolished cleavage, indicating that the metalloprotease domain interacts with additional residues flanking the cleavage site. Thus, specific recognition of VWF depends on cooperative, modular contacts between several ADAMTS13 domains and discrete segments of VWF domain A2.
Figures
) were detected by gel electrophoresis and Western blotting with anti-GST antibody. The blots for GST-VWF28 were exposed to film for 35 seconds; other blots were exposed to film for 15 seconds. Results are representative of 3 independent experiments.
) were detected by gel electrophoresis and Western blotting with anti-GST antibody. Results are representative of 3 independent experiments.
) was detected by gel electrophoresis and Western blotting with anti-GST antibody. (B) GST-VWF64, GST-VWF73nl, and GST-VWF106nl (65 nM) were incubated for 2 hours with 2 nM recombinant ADAMTS13 (FL), or for 6 hours with 0.3 nM plasma ADAMTS13 (PL). Substrates and cleavage products (
) were detected by gel electrophoresis and Western blotting with anti-GST antibody. Asterisks (*) indicates nonspecific bands observed reproducibly for GST-VWFd5 and GST-VWF106nl. Results are representative of 3 independent experiments. (C) Time course for cleavage of 6.8 nM GST-VWF64 (○), GST-VWF73nl (●), and GST-VWF106nl (□) by 1 nM ADAMTS13 at 37°C. Cleavage products were quantitated by an ELISA method. Data points represent the mean values for 2 independent experiments; the range was 2% to 9% of the mean.
Comment in
-
Shear tango: dance of the ADAMTS13/VWF complex.Blood. 2008 Sep 1;112(5):1548-9. doi: 10.1182/blood-2008-06-160556. Blood. 2008. PMID: 18725567 Free PMC article.
References
-
- Sutherland JJ, O'Brien LA, Lillicrap D, Weaver DF. Molecular modeling of the von Willebrand factor A2 domain and the effects of associated type 2A von Willebrand disease mutations. J Mol Model (Online) 2004;10:259–270. - PubMed
-
- Titani K, Kumar S, Takio K, et al. Amino acid sequence of human von Willebrand factor. Biochemistry. 1986;25:3171–3184. - PubMed
-
- Levy GG, Nichols WC, Lian EC, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413:488–494. - PubMed
-
- Soejima K, Mimura N, Hirashima M, et al. A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? J Biochem. 2001;130:475–480. - PubMed
-
- Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001;276:41059–41063. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
