Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;22(9):3207-15.
doi: 10.1096/fj.07-103804. Epub 2008 May 21.

Nitric oxide elicits functional MMP-13 protein-tyrosine nitration during wound repair

Affiliations

Nitric oxide elicits functional MMP-13 protein-tyrosine nitration during wound repair

Tania R Lizarbe et al. FASEB J. 2008 Sep.

Abstract

Nitric oxide (NO) plays a critical role in wound healing, in part by promoting angiogenesis. However, the precise repair pathways affected by NO are not well defined. We now show that NO regulates matrix metalloproteinase-13 (MMP-13) release during wound repair. We find that normally MMP-13 is kept inside endothelial cells by an association with caveolin-1. However, nitration of MMP-13 on tyrosine residue Y338 causes it to dissociate from caveolin-1 and be released from endothelial cells. We next explored the functional significance of MMP-13 nitration in vivo. Skin injury increases nitration of MMP-13 in mice. Skin wounds in inducible nitric oxide synthase knockout mice release less MMP-13 and heal more slowly than skin wounds in wild-type mice. Conversely, skin wounds in caveolin-1 knockout mice have increased NO production, increased MMP-13 nitration, and accelerated wound healing. Collectively, our data reveal a new pathway through which NO modulates wound repair: nitration of MMP-13 promotes its release from endothelial cells, where it accelerates angiogenesis and wound healing.

PubMed Disclaimer

Publication types

LinkOut - more resources