Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;295(1):R38-44.
doi: 10.1152/ajpregu.00172.2008. Epub 2008 May 21.

Adrenomedullin acts in the lateral parabrachial nucleus to increase arterial blood pressure through mechanisms mediated by glutamate and nitric oxide

Affiliations
Free article

Adrenomedullin acts in the lateral parabrachial nucleus to increase arterial blood pressure through mechanisms mediated by glutamate and nitric oxide

Adrian Geambasu et al. Am J Physiol Regul Integr Comp Physiol. 2008 Jul.
Free article

Abstract

Adrenomedullin (ADM) acts in a site-specific manner within autonomic centers of the brain to modulate mean arterial pressure (MAP). To determine the role of ADM in the pontine autonomic center, the lateral parabrachial nucleus (LPBN), we used urethane-anesthetized adult Sprague-Dawley male rats to test the hypothesis that ADM increases MAP at this site through glutamate- and nitric oxide (NO)-dependent mechanisms. ADM microinjected into the LPBN increased MAP in a dose-dependent manner. The pressor effect of ADM (0.01 pmol) had a peak value of 11.9 +/- 1.9 mmHg at 2 min and lasted for 7 min. We demonstrated that ADM's effect is receptor mediated by blocking the effect with the ADM receptor antagonist, ADM22-52. We showed that glutamate mediates ADM's pressor response, as this response was blocked using coinjections of ADM with dizolcipine hydrogen maleate or 6-cyano-7-nitroquinoxaline-2,3-dione, N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor antagonists, respectively. We tested the roles of NO with coinjections of ADM with either N5-(1-iminoethyl)-L-ornithine or 7-nitroindazole monosodium salt, nonspecific and neuronal NO synthase (NOS) inhibitors, respectively; both inhibitors blocked ADM's pressor effect. Finally, we studied the role of calcium influx in ADM's pressor effect, as intracellular calcium is important in both glutamate and NO neurotransmission. ADM's effect was blocked when nifedipine, an L-type calcium channel blocker, was coinjected with ADM into the LPBN. This study is the first to show that ADM acts in the LPBN to increase MAP through mechanisms dependent on activation of ionotropic glutamate receptors, neuronal and endothelial NOS-mediated NO synthesis, and L-type calcium channel activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources