A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models
- PMID: 18496710
- DOI: 10.1007/s00422-008-0237-x
A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models
Abstract
Parameters in diffusion neuronal models are divided into two groups; intrinsic and input parameters. Intrinsic parameters are related to the properties of the neuronal membrane and are assumed to be known throughout the paper. Input parameters characterize processes generated outside the neuron and methods for their estimation are reviewed here. Two examples of the diffusion neuronal model, which are based on the integrate-and-fire concept, are investigated--the Ornstein--Uhlenbeck model as the most common one and the Feller model as an illustration of state-dependent behavior in modeling the neuronal input. Two types of experimental data are assumed-intracellular describing the membrane trajectories and extracellular resulting in knowledge of the interspike intervals. The literature on estimation from the trajectories of the diffusion process is extensive and thus the stress in this review is set on the inference made from the interspike intervals.
Similar articles
-
The stochastic diffusion models of nerve membrane depolarization and interspike interval generation.J Peripher Nerv Syst. 1999;4(1):27-42. J Peripher Nerv Syst. 1999. PMID: 10197063 Review.
-
Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal.Neural Comput. 2008 Nov;20(11):2696-714. doi: 10.1162/neco.2008.11-07-653. Neural Comput. 2008. PMID: 18533814
-
Optimum signal in a diffusion leaky integrate-and-fire neuronal model.Math Biosci. 2007 Jun;207(2):261-74. doi: 10.1016/j.mbs.2006.08.027. Epub 2006 Sep 16. Math Biosci. 2007. PMID: 17070558
-
Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model.J Physiol Paris. 2010 May-Sep;104(3-4):160-6. doi: 10.1016/j.jphysparis.2009.11.019. Epub 2009 Nov 26. J Physiol Paris. 2010. PMID: 19944155
-
Statistical decision theory to relate neurons to behavior in the study of covert visual attention.Vision Res. 2009 Jun;49(10):1097-128. doi: 10.1016/j.visres.2008.12.008. Epub 2009 Jan 10. Vision Res. 2009. PMID: 19138699 Review.
Cited by
-
Dimensional reduction in networks of non-Markovian spiking neurons: Equivalence of synaptic filtering and heterogeneous propagation delays.PLoS Comput Biol. 2019 Oct 8;15(10):e1007404. doi: 10.1371/journal.pcbi.1007404. eCollection 2019 Oct. PLoS Comput Biol. 2019. PMID: 31593569 Free PMC article.
-
Fast inference of interactions in assemblies of stochastic integrate-and-fire neurons from spike recordings.J Comput Neurosci. 2011 Oct;31(2):199-227. doi: 10.1007/s10827-010-0306-8. Epub 2011 Jan 11. J Comput Neurosci. 2011. PMID: 21222149
-
Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process.J Comput Neurosci. 2011 Nov;31(3):563-79. doi: 10.1007/s10827-011-0326-z. Epub 2011 Apr 9. J Comput Neurosci. 2011. PMID: 21479618 Free PMC article.
-
Computational Neuroscience: Mathematical and Statistical Perspectives.Annu Rev Stat Appl. 2018 Mar;5:183-214. doi: 10.1146/annurev-statistics-041715-033733. Epub 2017 Dec 8. Annu Rev Stat Appl. 2018. PMID: 30976604 Free PMC article.
-
Some Dissimilarity Measures of Branching Processes and Optimal Decision Making in the Presence of Potential Pandemics.Entropy (Basel). 2020 Aug 8;22(8):874. doi: 10.3390/e22080874. Entropy (Basel). 2020. PMID: 33286645 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources