Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep 15;414(3):391-7.
doi: 10.1042/BJ20080280.

In vivo modular control analysis of energy metabolism in contracting skeletal muscle

Affiliations

In vivo modular control analysis of energy metabolism in contracting skeletal muscle

Laurent M Arsac et al. Biochem J. .

Abstract

We used (31)P MRS (magnetic resonance spectroscopy) measurements of energetic intermediates [ATP, P(i) and PCr (phosphocreatine)] in combination with the analytical tools of metabolic control analysis to study in vivo energy metabolism in the contracting skeletal muscle of anaesthetized rats over a broad range of workload. According to our recent MoCA (modular control analysis) used to describe regulatory mechanisms in beating heart, we defined the energetic system of muscle contraction as two modules (PCr-Producer and PCr-Consumer) connected by the energetic intermediates. Hypoxia and electrical stimulation were used in this in vivo study as reasonably selective modulations of Producer and Consumer respectively. As quantified by elasticity coefficients, the sensitivities of each module to PCr determine the control of steady-state contractile activity and metabolite concentrations. The magnitude of the elasticity of the producer was high (4.3+/-0.6) at low workloads and decreased 5-fold (to 0.9+/-0.2) at high workloads. By contrast, the elasticity of the consumer remained low (0.5-1.2) over the range of metabolic rates studied. The control exerted by each module over contraction was calculated from these elasticities. The control of contraction was found on the consumer at low workloads and then swung to the producer, due to the workload-dependent decrease in the elasticity of producer. The workload-dependent elasticity and control pattern of energy production in muscle is a major difference from heart. Since module rate and elasticity depend on the concentrations of substrates and products, the absence of homoeostasis of the energetic intermediates in muscle, by contrast with heart, is probably the origin of the workload-dependent elasticity of the producer module.

PubMed Disclaimer

Publication types

LinkOut - more resources