Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan;25(1):1-22.
doi: 10.1002/jbm.820250102.

Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study

Affiliations

Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study

P Törmälä et al. J Biomed Mater Res. 1991 Jan.

Abstract

The ultra-high-strength, self-reinforced (SR) absorbable polymeric composites, consisting of reinforcement elements, like fibers, and of matrix polymer which have the same chemical element composition as reinforcement, were defined. A method to manufacture self-reinforced, absorbable polyglycolide (SR-PGA) rods of polyglycolide sutures (Dexon) by sintering them partially together at elevated temperature and pressure was presented. The rods with nominal diameters of 1.5 mm, 2.0 mm, 3.2 mm, and 4.5 mm showed initial bending modulus and strength values of 8-15 GPa and 220-405 MPa, respectively. Their initial shear strengths were 165-255 MPa. The smallest rods (diam. 1.5 mm) lost their mechanical strength after implantation in the subcutis of rabbits in 4-5 weeks while the thickest rods retained their strength over 8 weeks. The ultra-high-strength SR-PGA rods were concluded to be suitable for fixation of cancellous bone fractures, osteotomies, and epiphyseal plate fractures where the fixation is not exposed to excessive mechanical stresses and where the loads are predominantly of a shear nature.

PubMed Disclaimer

Publication types

LinkOut - more resources