Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 May 1:13:4039-50.
doi: 10.2741/2992.

Towards modeling of amyloid fibril structures

Affiliations
Review

Towards modeling of amyloid fibril structures

Jun-tao Guo et al. Front Biosci. .

Abstract

Amyloid fibrils are associated with a number of debilitating diseases, including Alzheimer's disease and variant Creutzfeldt-Jakob disease. The elucidation of the structure of amyloid fibrils is an important step toward understanding the mechanism of amyloid formation and developing therapeutic agents for amyloid diseases. Despite great interests and substantial efforts from various research communities, deriving high-resolution structures of amyloid fibrils remains a challenging problem, due to the insolubility and non-crystalline nature of the fibrils. An array of experimental methods, such as electron microscopy, fiber diffraction, hydrogen-deuterium exchange, solid-state NMR, electron paramagnetic resonance spectroscopy and biochemical approaches, have been explored to study the problem, having yielded considerable amount of, though still partial, information about the fibril conformation. Computational modeling techniques can be used to predict and build structural models of amyloid fibrils, utilizing the available experimental data. Here, we describe a few computational methods for modeling of aggregate and fibril structures with a focus on protein threading-based approaches and discuss the challenging issues ahead.

PubMed Disclaimer

Similar articles

Cited by

Publication types