Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May 1:13:6841-9.
doi: 10.2741/3192.

Inhibition of PI3K improves contractility in alpha1-adrenergically stimulated myocardium

Affiliations

Inhibition of PI3K improves contractility in alpha1-adrenergically stimulated myocardium

Claudius Jacobshagen et al. Front Biosci. .

Abstract

Recent studies have demonstrated that phosphoinositide 3-kinases (PI3Ks) play a fundamental role in regulating myocardial contractility. However, even though alpha1-adrenergic receptor stimulation is known to activate PI3Ks, the impact of this pathway on the inotropic effects of alpha1-stimulation is unclear. Isolated rabbit ventricular myocytes were preincubated with the PI3K inhibitor wortmannin (WM, 0.1 micromol/L). The alpha1 agonist phenylephrine (PE, 10 micromol/L) induced a significantly stronger increase in contractility in WM-treated versus control myocytes (Fractional shortening in percent of resting cell length: 6.14+/-0.33 percent; n=26 versus 4.85+/-0.33 percent; n=26, P less than 0.05). Furthermore, pretreatment with WM significantly increased the positive inotropic effect of PE in intact muscle strips from rabbit hearts. Mechanistically, we demonstrate that in WM-treated myocytes PE increased phospholamban (PLN) phosphorylation and intracellular Ca2+ transients to a significantly greater extent than in control myocytes. In summary, this is the first study to demonstrate that inhibition of PI3K by increasing PLN phosphorylation and Ca2+ transients significantly improves contractility in alpha1-adrenergically stimulated myocardium. This may have clinical implications for the treatment of decreased cardiac function in acute heart failure.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources